Theoretical and Applied Genetics

, Volume 131, Issue 8, pp 1683–1697 | Cite as

QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby

  • Mingqin Shao
  • Guihua Bai
  • Trevor W. Rife
  • Jesse Poland
  • Meng Lin
  • Shubing Liu
  • Hui Chen
  • Tadele Kumssa
  • Allan Fritz
  • Harold Trick
  • Yan Li
  • Guorong ZhangEmail author
Original Article


Key message

One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety “Danby.” The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance.


Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar “Danby” and determine their effects, a doubled haploid population derived from a cross of Danby × “Tiger” was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6–41.0% of the phenotypic variations. A SNP (SNP−222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP−222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.



Contribution number from the Kansas Agricultural Experiment Station is 18-034-J. This project was financially supported by the Kansas Wheat Alliance and Kansas Wheat Commission. This work was also partly funded by the Hatch Grant 1001453 and National Research Initiative Competitive Grants 2011-68002-30029, 2017-67007-25939 and 2017-67007-25929 from the USDA National Institute of Food and Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

122_2018_3107_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 23 kb)


  1. Albrecht T, Oberforster M, Kempf H, Ramgraber L, Schacht J, Kazman E, Zechner E, Neumayer A, Hartl L, Mohler V (2015) Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheats. J Appl Genet 56:277–285CrossRefPubMedGoogle Scholar
  2. Allard RW (1996) Genetic basis of the evolution of adaptedness in plants. Euphytica 92:1–11CrossRefGoogle Scholar
  3. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, pp 210–211Google Scholar
  4. Anderson JA, Sorrells ME, Tanksley SD (1993) Rflp analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453–459CrossRefGoogle Scholar
  5. Barnard A, Bona L (2004) Sprout damage and falling number in South African and Hungarian wheats. Cereal Res Commun 32:259–264Google Scholar
  6. Barrero JM, Cavanagh C, Verbyla KL, Tibbits JFG, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang PH, Whan A, Rigault P, Hayden MJ, Gubler F (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol 16:93. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bi HH, Sun YW, Xiao YG, Xia LQ (2014) Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica 195:197–207CrossRefGoogle Scholar
  8. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  9. Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014) Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biol 14:340. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao LZ, Hayashi K, Tokui M, Mori M, Miura H, Onishi K (2016) Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.). Breed Sci 662:260–270CrossRefGoogle Scholar
  11. Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490CrossRefGoogle Scholar
  12. Chapman JA, Mascher M, Buluc A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 16:26. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi-Otobe C, Oda S, Kojima H, Nakamura S (2015) Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A. Breed Sci 65:103–109CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clarke FR, Knox RE, DePauw RM (2005) Expression of dormancy in a spring wheat cross grown in field and controlled environment conditions. Euphytica 143:297–300CrossRefGoogle Scholar
  15. de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685CrossRefPubMedGoogle Scholar
  16. DePauw RM, Knox RE, Singh AK, Fox SL, Humphreys DG, Hucl P (2012) Developing standardized methods for breeding preharvest sprouting resistant wheat, challenges and successes in Canadian wheat. Euphytica 188:7–14CrossRefGoogle Scholar
  17. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedPubMedCentralGoogle Scholar
  18. Fakthongphan J, Bai G, Amand PS, Graybosch RA, Baenziger PS (2016) Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW). Theor Appl Genet 129:419–430CrossRefPubMedGoogle Scholar
  19. Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50CrossRefGoogle Scholar
  20. Flintham J, Adlam R, Bassoi M, Holdsworth M, Gale M (2002) Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45CrossRefGoogle Scholar
  21. Fofana B, Humphreys DG, Rasul G, Cloutier S, Brule-Babel A, Woods S, Lukow OM, Somers DJ (2009) Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat cross. Euphytica 165:509–521CrossRefGoogle Scholar
  22. Gao F, Ayele BT (2014) Functional genomics of seed dormancy in wheat: advances and prospects. Front Plant Sci 5:458. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gao X, Hu CH, Li HZ, Yao YJ, Meng M, Dong J, Zhao WC, Chen QJ, Li XY (2013) Factors affecting pre-harvest sprouting resistance in wheat (Triticum aestivum L.): a review. J Anim Plant Sci 23:556–565Google Scholar
  24. Graybosch RA, St Amand P, Bai GH (2013) Evaluation of genetic markers for prediction of preharvest sprouting tolerance in hard white winter wheats. Plant Breed 132:359–366CrossRefGoogle Scholar
  25. Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet D (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor Appl Genet 104:39–47CrossRefPubMedGoogle Scholar
  26. Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo LB, Zhu LH, Xu YB, Zeng DL, Wu P, Qian Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162CrossRefGoogle Scholar
  28. Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Heaton EE, Seifert SA, Kottke RA, Rudolph JB, Martin TJ, Bai G, Chen X, Bowden RL, Jin Y, Kolmer JA, Seifers DL, Chen M, Seabourn BW (2011) Registration of ‘Snowmass’ wheat. J Plant Reg 5:87–90CrossRefGoogle Scholar
  29. Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Hudson-Arns EE, Seifert SA, Valdez VA, Kottke RA, Rudolph JB, Bai G, Chen X, Bowden RL, Jin Y, Kolmer JA, Chen M, Seabourn BW, Dowell FE (2014) Registration of ‘Antero’ Wheat. J Plant Reg 8:165–168CrossRefGoogle Scholar
  30. Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Hudson-Arns EE, Seifert SA, Anderson VA, Bai G, Chen X, Bowden RL, Jin Y, Kolmer JA, Chen M, Seabourn BW (2017) Registration of ‘Sunshine’ hard white winter wheat. J Plant Reg 11:289–294CrossRefGoogle Scholar
  31. Hareland GA (2003) Effects of pearling on falling number and alpha-amylase activity of preharvest sprouted spring wheat. Cereal Chem 80:232–237CrossRefGoogle Scholar
  32. Hickey LT, Lawson W, Arief VN, Fox G, Franckowiak J, Dieters MJ (2012) Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents. Euphytica 188:113–122CrossRefGoogle Scholar
  33. Iehisa JC, Matsuura T, Mori IC, Takumi S (2014) Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J Plant Physiol 171:25–34CrossRefPubMedGoogle Scholar
  34. Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiménez N, Mares D, Mrva K, Lizana C, Contreras S, Schwembe AR (2017) Susceptibility to preharvest sprouting of Chilean and Australian elite cultivars of common wheat. Crop Sci 57:462–474CrossRefGoogle Scholar
  36. Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985CrossRefGoogle Scholar
  37. King RW, Richards RA (1984) Water-uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics. Aust J Agric Res 35:327–336CrossRefGoogle Scholar
  38. Kosambi DD (1943) The estimation of map distances from recombination values. Ann of Eugen 12:172–175CrossRefGoogle Scholar
  39. Kulwal PL, Kumar N, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059CrossRefPubMedGoogle Scholar
  40. Kulwal P, Ishikawa G, Benscher D, Feng ZY, Yu LX, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805CrossRefPubMedGoogle Scholar
  41. Kumar A, Kumar J, Singh R, Garg T, Chhuneja P, Balyan HS, Gupta PK (2009) QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177:114–122CrossRefGoogle Scholar
  42. Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60CrossRefPubMedGoogle Scholar
  43. Lei L, Zhu XK, Wang SW, Zhu MR, Carver BF, Yan LL (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS ONE 8:e73330CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genom 4:84–93CrossRefGoogle Scholar
  45. Lin M, Cai SB, Wang S, Liu SB, Zhang GR, Bai GH (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395CrossRefPubMedGoogle Scholar
  46. Lin M, Zhang DD, Liu SB, Zhang GR, Yu JM, Fritz AK, Bai GH (2016) Genome-wide association analysis on pre-harvest sprouting resistance and grain color in US winter wheat. BMC Genom 17:794. CrossRefGoogle Scholar
  47. Liu SB, Bai GH (2010) Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theor Appl Genet 121:1395–1404CrossRefPubMedGoogle Scholar
  48. Liu SB, Cai SB, Graybosch R, Chen CX, Bai GH (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699CrossRefPubMedGoogle Scholar
  49. Liu SB, Bai GH, Cai SB, Chen CX (2011) Dissection of genetic components of preharvest sprouting resistance in white wheat. Mol Breed 27:511–523CrossRefGoogle Scholar
  50. Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu SB, Sehgal SK, Lin M, Li JR, Trick HN, Gill BS, Bai GH (2015) Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol 208:928–935CrossRefPubMedGoogle Scholar
  52. Lohwasser U, Arif MAR, Borner A (2013) Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping. Biol Plant 57:663–674CrossRefGoogle Scholar
  53. Mares DJ, Mrva K (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust J Agric Res 52:1257–1265CrossRefGoogle Scholar
  54. Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167–1178CrossRefPubMedGoogle Scholar
  55. Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364CrossRefPubMedGoogle Scholar
  56. Mares D, Rathjen J, Mrva K, Cheong J (2009) Genetic and environmental control of dormancy in white-grained wheat (Triticum aestivum L.). Euphytica 168:311–318CrossRefGoogle Scholar
  57. Martin TJ, Sears RG, Seifers DL, Harvey TL, Witt MD, Schlegel AJ, McCluskey PJ, Hatchett JH (2001) Registration of ‘Trego’ wheat. Crop Sci 41:929–930CrossRefGoogle Scholar
  58. Martin TJ, Zhang G, Fritz AK, Miller R, Chen M (2013) Registration of ‘Tiger’ wheat. J Plant Reg 7:201–204CrossRefGoogle Scholar
  59. Martin TJ, Zhang G, Fritz AK, Miller R, Chen M (2014) Registration of ‘Clara CL’ wheat. J Plant Reg 8:38–42CrossRefGoogle Scholar
  60. Mayer KFX, Rogers J, Dolezel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, Endo TR, Dolezel J, Kubalakova M, Cihalikova J, Dubska Z, Vrana J, Sperkova R, Simkova H, Rogers J, Febrer M, Clissold L, McLay K, Singh K, Chhuneja P, Singh NK, Khurana J, Akhunov E, Choulet F, Sourdille P, Feuillet C, Alberti A, Barbe V, Wincker P, Kanamori H, Kobayashi F, Itoh T, Matsumoto T, Sakai H, Tanaka T, Wu JZ, Ogihara Y, Handa H, Pozniak C, Maclachlan PR, Sharpe A, Klassen D, Edwards D, Batley J, Olsen OA, Sandve SR, Lien S, Steuernagel B, Wulff B, Caccamo M, Ayling S, Ramirez-Gonzalez RH, Clavijo BJ, Steuernagel B, Wright J, Pfeifer M, Spannagl M, Mayer KFX, Martis MM, Akhunov E, Choulet F, Mayer KFX, Mascher M, Chapman J, Poland JA, Scholz U, Barry K, Waugh R, Rokhsar DS, Muehlbauer GJ, Stein N, Gundlach H, Zytnicki M, Jamilloux V, Quesneville H, Wicker T, Mayer KFX, Faccioli P, Colaiacovo M, Pfeifer M, Stanca AM, Budak H, Cattivelli L, Glover N, Martis MM, Choulet F, Feuillet C, Mayer KFX, Pfeifer M, Pingault L, Mayer KFX, Paux E, Spannagl M, Sharma S, Mayer KFX, Pozniak C, Appels R, Bellgard M, Chapman B, Pfeifer M, Pfeifer M, Sandve SR, Nussbaumer T, Bader KC, Choulet F, Feuillet C, Mayer KFX, Akhunov E, Paux E, Rimbert H, Wang SC, Poland JA, Knox R, Kilian A, Pozniak C, Alaux M, Alfama F, Couderc L, Jamilloux V, Guilhot N, Viseux C, Loaec M, Quesneville H, Rogers J, Dolezel J, Eversole K, Feuillet C, Keller B, Mayer KFX, Olsen OA, Praud S, IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788CrossRefGoogle Scholar
  61. Miao XL, Zhang YJ, Xia XC, He ZH, Zhang Y, Yan J, Chen XM (2013) Mapping quantitative trait loci for pre-harvest sprouting resistance in white-grained winter wheat line CA 0431. Crop Pasture Sci 64:573–579CrossRefGoogle Scholar
  62. Miura H, Sato N, Kato K, Amano Y (2002) Detection of chromosomes carrying genes for seed dormancy of wheat using the backcross reciprocal monosomic method. Plant Breed 121:394–399CrossRefGoogle Scholar
  63. Mohan A, Kulwal P, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329CrossRefGoogle Scholar
  64. Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323CrossRefPubMedGoogle Scholar
  65. Nakamura S, Chono M, Abe F, Miura H (2010) Mapping a diploid wheat abscisic acid 8′-hydroxylase homologue in the seed dormancy QTL region on chromosome 5Am. Euphytica 171:111–120CrossRefGoogle Scholar
  66. Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 Acts in the regulation of germination. Plant Cell 23:3215–3229CrossRefPubMedPubMedCentralGoogle Scholar
  67. Paterson AH, Sorrells ME (1990) Inheritance of grain dormancy in white-kernelled wheat. Crop Sci 30:25–30CrossRefGoogle Scholar
  68. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521CrossRefPubMedGoogle Scholar
  69. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rasul G, Humphreys DG, Brule-Babel A, McCartney CA, Knox RE, DePauw RM, Somers DJ (2009) Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica 168:363–378CrossRefGoogle Scholar
  72. Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336–340CrossRefGoogle Scholar
  73. Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcarkova B, Valarik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67:4169–4178CrossRefPubMedPubMedCentralGoogle Scholar
  74. Silva LC, Wang S, Zeng ZB (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol 871:75–119CrossRefGoogle Scholar
  75. Skubacz A, Daszkowska-Golec A, Szarejko L (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedGoogle Scholar
  77. Steber CM, Carter AH, and Pumphrey MO (2014) Reduce falling numbers risk. Accessed 28 June 2017
  78. Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131CrossRefGoogle Scholar
  79. Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu JZ, Matsumoto T, Kawaura K, Ogihara Y (2016) A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol 26:782–787CrossRefPubMedGoogle Scholar
  80. Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  81. Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379CrossRefPubMedGoogle Scholar
  82. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
  83. Wang L, Cheng JP, Lai YY, Du WL, Huang X, Wang ZF, Zhang HS (2014) Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta 239:411–420CrossRefPubMedGoogle Scholar
  84. Xiao SH, Zhang HP, You GX, Zhang XY, Yan CS, Chen X (2012) Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment. Euphytica 188:85–88CrossRefGoogle Scholar
  85. Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Wilkinson M, Jones HD, Shewry PR, Xia LQ (2007a) Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot 58:2863–2871CrossRefPubMedGoogle Scholar
  86. Yang Y, Zhao XL, Xia LQ, Chen XM, Xia XC, Yu Z, He ZH, Roeder M (2007b) Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theor Appl Genet 115:971–980CrossRefPubMedGoogle Scholar
  87. Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat × spelt cross. Crop Sci 40:1406–1417CrossRefGoogle Scholar
  88. Zhu YL, Wang SX, Zhang HP, Zhao LX, Wu ZY, Jiang H, Cao JJ, Liu K, Qin M, Lu J, Sun GL, Xia XC, Chang C, Ma CX (2016) Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat. Mol Breed 36:174. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingqin Shao
    • 1
  • Guihua Bai
    • 2
  • Trevor W. Rife
    • 3
  • Jesse Poland
    • 3
  • Meng Lin
    • 1
  • Shubing Liu
    • 1
  • Hui Chen
    • 1
  • Tadele Kumssa
    • 4
  • Allan Fritz
    • 1
  • Harold Trick
    • 3
  • Yan Li
    • 1
  • Guorong Zhang
    • 1
    • 4
    Email author
  1. 1.Department of AgronomyKansas State UniversityManhattanUSA
  2. 2.USDA-ARS, Plant Science and Entomology Research UnitManhattanUSA
  3. 3.Department of Plant PathologyKansas State UniversityManhattanUSA
  4. 4.Agricultural Research Center-Hays, Kansas State UniversityHaysUSA

Personalised recommendations