Skip to main content

Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.)

Abstract

Key message

Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content.

Abstract

Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  2. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  3. Assuncao AGL, Herrero E, Lin Y-F, Huettel B, Talukdar S, Smaczniak C, Immink RGH, van Eldik M, Fiers M, Schat H et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci 107:10296–10301

    Article  PubMed  Google Scholar 

  4. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    Article  PubMed  CAS  Google Scholar 

  5. Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv 31:1624–1633

    Article  PubMed  CAS  Google Scholar 

  6. Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  7. Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of andean landraces of common bean. Crops 862:854–862

    Google Scholar 

  8. Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  PubMed  CAS  Google Scholar 

  9. Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    Article  PubMed  Google Scholar 

  10. Blair MW, Buendía HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  PubMed  CAS  Google Scholar 

  11. Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  12. Blair MW, Sharon JBK, Carolina A, Chee-Ming L, Andrea F, Grusak MA (2010a) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Blair MW, González LF, Kimani PM, Butare L (2010b) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010c) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  PubMed  CAS  Google Scholar 

  15. Blair MW, Monserrate F, Beebe S, Restrepo J, Flores J (2010d) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Regist 4:55

    Article  Google Scholar 

  16. Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521

    Article  PubMed  CAS  Google Scholar 

  17. Blair MW, Izquierdo P, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S, Holm PB (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56:204–213

    Article  CAS  Google Scholar 

  19. Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32

    Article  Google Scholar 

  20. Broughton WJ, Hern G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  21. Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G (2012) Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem 135:1789–1795

    Article  PubMed  CAS  Google Scholar 

  22. Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  23. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  25. Cichy KA, Fernandez A, Kilian A, Kelly JD, Galeano CH, Shaw S, Brick M, Hodkinson D, Troxtell E (2014) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Mol Breed 33:139–154

    Article  Google Scholar 

  26. Connolly EL, Guerinot M (2002) Iron stress in plants. Genome Biol 3:1024.1–1024.4

    Article  Google Scholar 

  27. Connorton JM, Balk J, Rodríguez-Celma J (2017a) Iron homeostasis in plants—a brief overview. Metallomics 9:813–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Connorton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J (2017b) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174:2434–2444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  PubMed  CAS  Google Scholar 

  30. Daware AV, Srivastava R, Singh AK, Parida SK, Tyagi AK (2017) Regional association analysis of MetaQTL delineates candidate grain size genes in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00807

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Araújo R, Miglioranza É, Montalvan R, Destro D, Celeste M (2003) Genotype x environment interaction effects on the iron content of common bean grains. Crop Breed Appl Biotechnol 3:269–273

    Article  Google Scholar 

  32. Diapari A, Bett K, Deokar A, Warkentin TD, Tar’an BM (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    Article  PubMed  CAS  Google Scholar 

  33. Freyre RO, Tsai SM, Gilbertson RL, Gepts P (1998) Towards an integrated linkage map of common bean 4. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Google Scholar 

  34. Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, McClean PE, Vanderleyden J, Blair MW (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS ONE 6:e28135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ (2014) Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in arabidopsis. PLoS ONE 9:1–8

    Article  CAS  Google Scholar 

  37. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  CAS  Google Scholar 

  38. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  39. Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron- binding protein ferritin. TAG Theor Appl Genet 100:658–664

    Article  CAS  Google Scholar 

  40. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  PubMed  CAS  Google Scholar 

  41. Guzman-Maldonado SH, Martinez O, Acosta-Gallegos JA, Guevara-Lara F, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  42. Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in arabidopsis. Plant Physiol 143:1705–1719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in arabidopsis. Plant Cell Online 24:724–737

    Article  CAS  Google Scholar 

  44. Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  PubMed  CAS  Google Scholar 

  45. Hossain K, Islam N, Ghavami F, Tucker M, Kowalshy T et al (2013) Interdependence of genotype and growing site on seed mineral compositions in common bean. Asian J Plant Sci 12:11–20

    Article  Google Scholar 

  46. Ihemere U (2012) Iron biofortification and homeostasis in transgenic cassava roots expressing the algal iron assimilatory gene, FEA1. Front Plant Sci 3:1–22

    Article  CAS  Google Scholar 

  47. Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  48. Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4:21–27

    Article  Google Scholar 

  49. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:1–8

    Article  CAS  Google Scholar 

  50. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci 105:10619–10624

    Article  PubMed  Google Scholar 

  51. Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63:317–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Joshi PK, Rao PP (2017) Global pulses scenario: status and outlook. Ann N Y Acad Sci 1392(1):6–17

    Article  PubMed  CAS  Google Scholar 

  53. Kanobe MN, Rodermel SR, Bailey T, Scott MP (2013) Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front Plant Sci 4:1–14

    Article  Google Scholar 

  54. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  PubMed  CAS  Google Scholar 

  55. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  PubMed  CAS  Google Scholar 

  56. Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. López-Millán AF, Duy D, Philippar K (2016) Chloroplast iron transport proteins—function and impact on plant physiology. Front Plant Sci 7:1–12

    Article  Google Scholar 

  58. Mary V, Schnell Ramos M, Gillet C, Socha AL, Giraudat J, Agorio A, Merlot S, Clairet C, Kim SA, Punshon T et al (2015) bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 double mutant. Plant Physiol 169:748–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  60. McClean P, Gepts P, Kami J (2004) Genomics and genetic diversity in common bean. In: Wilson RF, Stalker HT, Brummer EC (eds) Legume crop genomics. AOCS Press, Champaign, IL, pp 60–82

    Google Scholar 

  61. Moreno-Moyano LT, Bonneau JP, Sánchez-Palacios JT, Tohme J, Johnson AAT (2016) Association of increased grain iron and zinc concentrations with agro-morphological traits of biofortified rice. Front Plant Sci 7:1–13

    Article  Google Scholar 

  62. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  PubMed  CAS  Google Scholar 

  63. Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Symposium: food fortification in developing countries biofortification of staple food crops. J Nutr 136:1064–1067

    Article  PubMed  CAS  Google Scholar 

  64. Pereira HS, Del Peloso MJ, Bassinello PZ, Guimarães CM (2014) Genetic variability for iron and zinc content in common bean lines and interaction with water availability. Genet Mol Res 13:6773–6785

    Article  PubMed  CAS  Google Scholar 

  65. Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTL for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380

    Article  PubMed  Google Scholar 

  66. Rogers EE, Wu X, Stacey G, Nguyen HT (2009) Two MATE proteins play a role in iron efficiency in soybean. J Plant Physiol 166:1453–1459

    Article  PubMed  CAS  Google Scholar 

  67. SAS-Institute (2011) SAS Institute Inc. 2011. SAS® 9.3 System Options: Reference, Second Edition

  68. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. https://doi.org/10.1038/ng.3008

    PubMed  Article  Google Scholar 

  69. Schuler M, Rellán-Álvarez R, Fink-Straube C, Abadía J, Bauer P (2012) Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in arabidopsis. Plant Cell 24:2380–2400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Singh SP, Keller B, Gruissem W, Bhullar NK (2017) Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet 130:283–292

    Article  PubMed  CAS  Google Scholar 

  71. Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink J-L, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity (Edinb) 116:395–408

    Article  CAS  Google Scholar 

  72. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  PubMed  CAS  Google Scholar 

  74. Tyagi S, Mir RR, Balyan HS, Gupta PK (2015) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201:367–380

    Article  CAS  Google Scholar 

  75. Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Van K, McHale LK (2017) Meta-analyses of QTL associated with protein and oil contents and compositions in soybean [Glycine max (L.) Merr.] Seed. Int J Mol Sci. https://doi.org/10.3390/ijms18061180

    PubMed  PubMed Central  Article  Google Scholar 

  77. Vasconcellos RCC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN (2017) Meta-QTL for resistance to white mold in common bean. PLoS ONE 12:e0171685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Vasconcelos MW, Clemente TE, Grusak MA (2014) Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L). Front Plant Sci 5:1–12

    Google Scholar 

  79. Vasconcelos MW, Gruissem W, Bhullar NK (2017) Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 44:8–15

    Article  PubMed  CAS  Google Scholar 

  80. Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Lou Guerinot M, Briat J-F, Curie C (2002) IRT1, an arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/-WQTLCart.htm. Accessed 16 June 2017

  82. Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  PubMed  CAS  Google Scholar 

  84. Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  PubMed  CAS  Google Scholar 

  85. Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W (2016) Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Mol Genet Genomics 291:1927–1940

    Article  PubMed  CAS  Google Scholar 

  86. Yao N, Lee C-R, Semagn K, Sow M, Nwilene F, Kolade O, Bocco R, Oyetunji O, Mitchell-Olds T, Ndjiondjop M-N et al (2016) QTL mapping in three rice populations uncovers major genomic regions associated with African rice gall midge resistance. PLoS ONE 11:e0160749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was through USDA-ARS to K. Cichy and a USAID CRP4 Linkages Grant to B. Raatz (Grant Nos. 3635-21430-009-00D, 340001-040-001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen A. Cichy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Matthew N. Nelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izquierdo, P., Astudillo, C., Blair, M.W. et al. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor Appl Genet 131, 1645–1658 (2018). https://doi.org/10.1007/s00122-018-3104-8

Download citation