Theoretical and Applied Genetics

, Volume 131, Issue 4, pp 959–971 | Cite as

The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus)

  • Janina Braatz
  • Hans-Joachim Harloff
  • Nazgol Emrani
  • Chirlon Elisha
  • Lars Heepe
  • Stanislav N. Gorb
  • Christian Jung
Original Article


Key message

This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described.


Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.



This study was financed by the Stiftung Schleswig-Holsteinische Landschaft under Grant no. 2013/69. We thank Monika Bruisch, Hilke Jensen, Lara Wostupatsch, and Niloufar Nezaratizadeh for technical assistance; Mario Hasler for support on statistical analyses; Maria Mulisch and Cay Kruse for assistance with light microscopy of cryosections; the Institute of Clinical Molecular Biology in Kiel for Sanger sequencing; the breeding company Norddeutsche Pflanzenzucht Hans-Georg Lembke for collaboration regarding the EMS mutant population.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3051_MOESM1_ESM.pptx (6.8 mb)
Supplementary material 1 (PPTX 6917 kb)
122_2018_3051_MOESM2_ESM.docx (29 kb)
Supplementary material 2 (DOCX 30 kb)


  1. Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, Lawrenson T, Sablowski R, Ostergaard L (2011) Gibberellins control fruit patterning in Arabidopsis thaliana. Gene Dev 24(19):2127–2132. CrossRefGoogle Scholar
  2. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100(19):10603–10606. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bruce DM, Hobson RN, Morgan CL, Child RD (2001) Threshability of shatter-resistant seed pods in oilseed rape. J Agric Eng Res 80(4):343–350. CrossRefGoogle Scholar
  4. Bruce DM, Farrent JW, Morgan CL, Child RD (2002) Determining the oilseed rape pod strength needed to reduce seed loss due to pod shatter. Biosyst Eng 81(2):179–184. CrossRefGoogle Scholar
  5. Cochran WG (1957) Analysis of covariance—its nature and uses. Biometrics 13(3):261–281. CrossRefGoogle Scholar
  6. Dening K, Heepe L, Afferrante L, Carbone G, Gorb SN (2014) Adhesion control by inflation: implications from biology to artificial attachment device. Appl Phys A 116(2):567–573. CrossRefGoogle Scholar
  7. Etzold H (2002) Simultanfärbung von Pflanzenschnitten mit Fuchsin, Chrysoidin und Astrablau. Mikrokosmos 91(5):316Google Scholar
  8. Ferrándiz C (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438. CrossRefPubMedGoogle Scholar
  9. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Girin T, Stephenson P, Goldsack CMP, Kempin SA, Perez A, Pires N, Sparrow PA, Wood TA, Yanofsky MF, Østergaard L (2010) Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. Plant J 63(2):329–338. CrossRefPubMedGoogle Scholar
  11. Girin T, Paicu T, Stephenson P, Fuentes S, Korner E, O’Brien M, Sorefan K, Wood TA, Balanza V, Ferrándiz C, Smyth DR, Ostergaard L (2011) INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Plant Cell 23(10):3641–3653. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J 68(5):816–829. CrossRefPubMedGoogle Scholar
  13. Gulden RH, Shirtliffe SJ, Thomas AG (2003) Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51(1):83–86CrossRefGoogle Scholar
  14. Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124(5):957–969. CrossRefPubMedGoogle Scholar
  15. Hu ZY, Hua W, Huang SM, Yang HL, Zhan GM, Wang XF, Liu GH, Wang HZ (2012) Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PLoS One 7(4):e34253. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu Z, Yang H, Zhang L, Wang X, Liu G, Wang H, Hua W (2015) A large replum-valve joint area is associated with increased resistance to pod shattering in rapeseed. J Plant Res 128(5):813–819. CrossRefPubMedGoogle Scholar
  17. Hua S, Shamsi IH, Guo Y, Pak H, Chen M, Shi C, Meng H, Jiang L (2009) Sequence, expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus. Planta 230(3):493–503. CrossRefPubMedGoogle Scholar
  18. Hui C-Y, Glassmaker N, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1(1):35–48. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jung C (2010) Breeding with genetically modified plants. In: Kempken F, Jung C (eds) modification of plants: agriculture, horticulture and forestry. Biotechnology in agriculture and forestry, 64th edn. Springer, Heidelberg, pp 103–116. CrossRefGoogle Scholar
  20. Kadkol GP, Macmillan RH, Burrow RP, Halloran GM (1984) Evaluation of Brassica genotypes for resistance to shatter. I. Development of a laboratory test. Euphytica 33(1):63–73. CrossRefGoogle Scholar
  21. Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM (2013) Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. New Phytol 197(1):73–87. CrossRefPubMedGoogle Scholar
  22. Laga B (2013) Brassica plant comprising a mutant ALCATRAZ allele. US Patent Application US20130291235A1, 31.10.2013Google Scholar
  23. Laga B, Lambert B, Boer Bd (2015) Brassica plant comprising a mutant INDEHISCENT allele. Europe Patent EP2220239B1, 20.05.2015Google Scholar
  24. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974. CrossRefPubMedGoogle Scholar
  25. Lenser T, Theißen G (2013) Conservation of fruit dehiscence pathways between Lepidium campestre and Arabidopsis thaliana sheds light on the regulation of INDEHISCENT. Plant J 76(4):545–556. CrossRefPubMedGoogle Scholar
  26. Liljegren SJ, Ditta GS, Eshed HY, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766–770. CrossRefPubMedGoogle Scholar
  27. Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Ostergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116(6):843–853. CrossRefPubMedGoogle Scholar
  28. Liu J, Wang J, Wang H, Wang W, Mei D, Zhou R, Cheng H, Yang J, Raman H, Hu Q (2016) Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci 7:1058. PubMedPubMedCentralGoogle Scholar
  29. Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IAP (2017) A user guide to the Brassica 60 K Illumina Infinium™ SNP genotyping array. Theor Appl Genet 130(4):621–633. CrossRefPubMedGoogle Scholar
  30. Meakin PJ, Roberts JA (1990) Dehiscence of fruit in oilseed rape (Brassica napus L).1. Anatomy of pod dehiscence. J Exp Bot 41(229):995–1002. CrossRefGoogle Scholar
  31. Mitsuda N, Ohme-Takagi M (2008) NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J 56(5):768–778. CrossRefPubMedGoogle Scholar
  32. Mulisch M, Welsch U (eds) (2015) Romeis—Mikroskopische Technik, 19th edn. Springer, Heidelberg. Google Scholar
  33. Ogawa M, Kay P, Wilson S, Swain SM (2009) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Price JS, Hobson RN, Neale MA, Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J Agric Eng Res 65(3):183–191. CrossRefGoogle Scholar
  36. R Core Team (2015) R: A language and environment for statistical computing, 3.2.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  37. Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11(24):1914–1922. CrossRefPubMedGoogle Scholar
  38. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 9(7):e101673. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B (2001) Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46(4):469–479. CrossRefPubMedGoogle Scholar
  40. Schondelmaier J, Steinrücken G, Jung C (1996) Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breed 115(4):231–237. CrossRefGoogle Scholar
  41. Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, Galván-Ampudia CS, Offringa R, Friml J, Yanofsky MF, Østergaard L (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459(7246):583–586. CrossRefPubMedGoogle Scholar
  42. Summers JE, Bruce DM, Vancanneyt G, Redig P, Werner CP, Morgan C, Child RD (2003) Pod shatter resistance in the resynthesized Brassica napus line DK142. J Agric Sci 140(1):43–52. CrossRefGoogle Scholar
  43. Tan XL, Xia ZW, Zhang LL, Zhang ZY, Guo ZJ, Qi CK (2009) Cloning and sequence analysis of oilseed rape (Brassica napus) SHP2 gene. Bot Stud 50(4):403–412Google Scholar
  44. Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1(5):2465–2477. CrossRefPubMedGoogle Scholar
  45. Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113(4):597–609. CrossRefPubMedGoogle Scholar
  46. van Gelderen K, van Rongen M, Aa Liu, Otten A, Offringa R (2016) An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Mol Plant 9(6):857–869. CrossRefPubMedGoogle Scholar
  47. Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6(14):3269–3272. CrossRefGoogle Scholar
  48. Verbeke G, Lesaffre E (1997) The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Comput Stat Data Anal 23(4):541–556. CrossRefGoogle Scholar
  49. Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126(6):588–595. CrossRefGoogle Scholar
  50. Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33(9):2806–2812. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang Y, Shen YY, Wu XM, Wang JB (2016) The basis of pod dehiscence: anatomical traits of the dehiscence zone and expression of eight pod shatter-related genes in four species of Brassicaceae. Biol Plant 60(2):343–354. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Breeding Institute, Christian-Albrechts-University of KielKielGermany
  2. 2.Zoological Institute, Functional Morphology and BiomechanicsChristian-Albrechts-University of KielKielGermany

Personalised recommendations