Theoretical and Applied Genetics

, Volume 132, Issue 4, pp 1235–1246 | Cite as

A MYB transcription factor is a candidate to control pungency in Capsicum annuum

  • Koeun Han
  • Siyoung Jang
  • Joung-Ho Lee
  • Do-Gyeong Lee
  • Jin-Kyung Kwon
  • Byoung-Cheorl KangEmail author
Original Article


Key message

Identification of a novel pungency-controlling gene Pun3, which acts as a master regulator of capsaicinoid biosynthetic genes in Capsicum annuum.


Capsaicinoid is a unique compound that gives hot peppers (Capsicum spp.) their spicy taste. The Pun1 and Pun2 loci are known to control pungency in Capsicum species. Whereas Pun1 encodes an acyltransferase, the identity of Pun2 is currently unknown. Here, we used recombinant inbred lines and F2 plants derived from a cross between the non-pungent C. annuum accession ‘YCM334’ and the pungent C. annuum cultivar ‘Tean’ to identify a novel non-pungency locus. Inheritance studies showed that non-pungency in C. annuum ‘YCM334’ is controlled by a single recessive gene, which we named Pun3. Using a high-density SNP map derived from genotyping-by-sequencing, Pun3 was mapped to chromosome 7. By comparing physical information about the Pun3 region in the C. annuum ‘Zunla-1’ and C. chinense ‘PI159236’ reference genomes, we identified candidate genes in this target region. One cDNA sequence from ‘PI159236’ was homologous to an unannotated gene in ‘Zunla-1.’ This sequence was also homologous to CaMYB31, which is expressed only in ‘Tean’ and harbors one stop codon in the non-pungent accession ‘YCM334.’ RNA-Seq analysis showed that major structural genes in the capsaicinoid biosynthetic pathway were significantly downregulated in ‘YCM334’ compared to pungent pepper. Therefore, CaMYB31 is a candidate gene for Pun3, which may act as a master regulator of capsaicinoid biosynthetic genes in pepper.



This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Agriculture, Food, and Rural Affairs Research Center Support Program (Vegetable Breeding Research Center, 710011-03), funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA). This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01322901), Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed according to the laws of Germany.

Supplementary material

122_2018_3275_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4403 kb)


  1. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321CrossRefGoogle Scholar
  2. Arce-Rodriguez ML, Ochoa-Alejo N (2015) Silencing AT3 gene reduces the expression of pAmt, BCAT, Kas, and Acl genes involved in capsaicinoid biosynthesis in chili pepper fruits. Biol Plant 59:477–484CrossRefGoogle Scholar
  3. Arce-Rodriguez ML, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370CrossRefGoogle Scholar
  4. Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706CrossRefGoogle Scholar
  5. Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86CrossRefGoogle Scholar
  6. Borovsky Y, Oren-Shamir M, Ovadia R, De Jong W, Paran I (2004) The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor Appl Genet 109:23–29CrossRefGoogle Scholar
  7. Bosland PW, Coon D (2015) Novel formation of ectopic (nonplacental) capsaicinoid secreting vesicles on fruit walls explains the morphological mechanism for super-hot chile peppers. Hortic Sci 140:253–256Google Scholar
  8. Cao X, Qiu Z, Wang X, Van Giang T, Liu X, Wang J, Wang X, Gao J, Guo Y, Du Y, Wang G, Huang Z (2017) A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J Exp Bot 68:5745–5758CrossRefGoogle Scholar
  9. Cheng J, Qin C, Tang X, Zhou H, Hu Y, Zhao Z, Cui J, Li B, Wu Z, Yu J, Hu K (2016) Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci Rep 6:33293CrossRefGoogle Scholar
  10. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13CrossRefGoogle Scholar
  11. De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704CrossRefGoogle Scholar
  12. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498CrossRefGoogle Scholar
  13. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953CrossRefGoogle Scholar
  14. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827CrossRefGoogle Scholar
  15. Han K, Jeong H-J, Sung J, Keum YS, Cho M-C, Kim J-H, Kwon J-K, Kim B-D, Kang B-C (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31:537–548CrossRefGoogle Scholar
  16. Han K, Jeong HJ, Yang HB, Kang SM, Kwon JK, Kim S, Choi D, Kang BC (2016) An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res 23:81–91CrossRefGoogle Scholar
  17. Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558CrossRefGoogle Scholar
  18. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076CrossRefGoogle Scholar
  19. Jang S, Han K, Jo YD, Jeong H-J, Siddique MI, Kang B-C (2015) Substitution of a dysfunctional pAMT allele results in low-pungency but high levels of capsinoid in Capsicum chinense ‘Habanero’. Plant Breed Biotechnol 3:119–128CrossRefGoogle Scholar
  20. Jeong H-J, Hwang D-Y, Ahn J-T, Chun J-Y, Han K-E, Lee W-M, Kwon J-K, Lee Y-J, Kang B-C (2012) Development of a simple method for detecting capsaicinoids using Gibb’s reagent in pepper. Korean J Hortic Sci Technol 30:294–300CrossRefGoogle Scholar
  21. Kang YJ, Ahn YK, Kim KT, Jun TH (2016) Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biol 16:235CrossRefGoogle Scholar
  22. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36CrossRefGoogle Scholar
  23. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sorensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278CrossRefGoogle Scholar
  24. Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D (2017a) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210CrossRefGoogle Scholar
  25. Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC (2017b) Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytol 213:886–899CrossRefGoogle Scholar
  26. Kirri E, Goto T, Yasuba K, Tanaka Y (2017) Non-pungency in a Japanese chili pepper landrace (Capsicum annuum) is caused by a novel loss-of-function Pun1 allele. Hort J 86:61–69CrossRefGoogle Scholar
  27. Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a caribbean island. J Jpn Soc Hortic 83:244–251CrossRefGoogle Scholar
  28. Koeda S, Sato K, Tanaka Y, Takisawa R, Kitajima A (2015) A Comt1 loss of function mutation is insufficient for loss of pungency in Capsicum. Am J Plant Sci 06:1243–1255CrossRefGoogle Scholar
  29. Koeda S, Sato K, Saito H, Nagano AJ, Yasugi M, Kudoh H, Tanaka Y (2018) Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theor Appl Genet. Google Scholar
  30. Lang Y, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yazawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Plant J 59:953–961CrossRefGoogle Scholar
  31. Lee J-H, An J-T, Siddique MI, Han K, Choi S, Kwon J-K, Kang B-C (2017) Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum). Mol Breed 37:121CrossRefGoogle Scholar
  32. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595CrossRefGoogle Scholar
  33. Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC (2016) Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). Theor Appl Genet 129:1541–1556CrossRefGoogle Scholar
  34. Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081CrossRefGoogle Scholar
  35. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5:92CrossRefGoogle Scholar
  36. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci 111:5135–5140CrossRefGoogle Scholar
  37. Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291CrossRefGoogle Scholar
  38. Sarpras M, Gaur R, Sharma V, Chhapekar SS, Das J, Kumar A, Yadava SK, Nitin M, Brahma V, Abraham SK, Ramchiary N (2016) comparative analysis of fruit metabolites and pungency candidate genes expression between Bhut Jolokia and other Capsicum species. PLoS ONE 11:e0167791CrossRefGoogle Scholar
  39. Seong ES, Guo J, Wang M-H (2008) The chilli pepper (Capsicum annuum) MYB transcription factor (CaMYB) is induced by abiotic stresses. J Plant Biochem Biotechnol 17:193–196CrossRefGoogle Scholar
  40. Stellari GM, Mazourek M, Jahn MM (2010) Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–471CrossRefGoogle Scholar
  41. Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688CrossRefGoogle Scholar
  42. Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991CrossRefGoogle Scholar
  43. Stommel JR, Lightbourn GJ, Winkel BS, Griesbach RJ (2009) Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Am Soc Hortic Sci 134:244–251CrossRefGoogle Scholar
  44. Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767CrossRefGoogle Scholar
  45. Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767CrossRefGoogle Scholar
  46. Tanaka Y, Sonoyama T, Muraga Y, Koeda S, Goto T, Yoshida Y, Yasuba K (2015) Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense. Mol Breed 35:142CrossRefGoogle Scholar
  47. Tanaka Y, Nakashima F, Kirii E, Goto T, Yoshida Y, Yasuba KI (2017) Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep 36:267–279CrossRefGoogle Scholar
  48. Tanaka Y, Fukuta S, Koeda S, Goto T, Yoshida Y, Ki Yasuba (2018) Identification of a novel mutant pAMT allele responsible for low-pungency and capsinoid production in chili pepper: accession ‘No. 4034’ (Capsicum chinense). Hortic J 87:222–228CrossRefGoogle Scholar
  49. Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Jv Baren, Salzberg S, Wold B, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
  50. Truong HTH, Kim K-T, Kim S, Chae Y, Park J-H, Oh D-G, Cho M-C (2010) Comparative mapping of consensus SSR markers in an intraspecific F8 recombinant inbred line population in Capsicum. Hortic Environ Biotechnol 51:193–206Google Scholar
  51. Zhang ZX, Zhao SN, Liu GF, Huang ZM, Cao ZM, Cheng SH, Lin SS (2016) Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Sci Rep 6:34121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Koeun Han
    • 1
  • Siyoung Jang
    • 1
  • Joung-Ho Lee
    • 1
  • Do-Gyeong Lee
    • 1
  • Jin-Kyung Kwon
    • 1
  • Byoung-Cheorl Kang
    • 1
    Email author
  1. 1.Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations