Skip to main content
Log in

Rare maternal and biparental transmission of the cucumber mitochondrial DNA reveals sorting of polymorphisms among progenies

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We used a mitochondrial (mt) mutant of cucumber to document rare maternal transmission of mt polymorphisms and demonstrate that polymorphisms can become more prevalent and sort to progenies to increase mt DNA diversity.

Abstract

The mitochondrial (mt) DNAs of most angiosperms show maternal inheritance, although relatively rare biparental or paternal transmission has been documented. The mt DNAs of plants in the genus Cucumis (family Cucurbitaceae) are paternally transmitted in intra- and interspecific crosses. MSC16 is an inbred line of cucumber (Cucumis sativus) with a mitochondrially associated mosaic (MSC) phenotype. MSC16 was crossed as the male parent to wild-type cultivar Calypso, and hybrid progenies were evaluated for the wild-type phenotype in order to screen for rare maternal or biparental transmission of the mt DNA. We then used standard and droplet digital (dd) PCR to study the transmission of polymorphic mt markers across three generations. We observed evidence for occasional maternal and biparental transmission of the mt DNA in cucumber. The transmission of specific regions of the maternal mt DNA could be as high as 17.8%, although the amounts of these maternal regions were often much lower relative to paternally transmitted regions. Different combinations of maternal and paternal mt polymorphisms were detected in progenies across generations, indicating that relatively rare maternal regions can be transmitted to progenies and become predominant to increase mt DNA diversity over generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu I, Santos A, Salema R (1982) Atypical mitochondria during microsporogenesis in Cucumis sativus L. J Submicrosc Cytol 14:369–375

    Google Scholar 

  • Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23:2499–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823

    Article  CAS  PubMed  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi, and animals. New Phytol 168:39–50

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewski G, Malepszy S, Havey MJ (2004) Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr Genet 45:45–53

    Article  CAS  PubMed  Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  CAS  PubMed  Google Scholar 

  • Chat J, Chalak L, Petit RJ (1999) Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor Appl Genet 99:314–322

    Article  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • Del Valle-Echevarria AR, Kielkowska A, Bartoszewski G, Havey MJ (2015) The mosaic mutants of cucumber: a method to produce knock-downs of mitochondrial transcripts. G3 (Genes, Genomes, Genetics) 5:1211–1221

    Google Scholar 

  • Del Valle-Echevarria AR, Sanseverino W, Garcia-Mas J, Havey MJ (2016) Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber. Theor Appl Genet 129:1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogen Evol 49:827–831

    Article  CAS  Google Scholar 

  • Ellis J, Bentley K, McCauley D (2008) Detection of rare paternal chloroplast inheritance in controlled crosses of the endangered sunflower Helianthus verticillatus. Heredity 100:574–580

    Article  CAS  PubMed  Google Scholar 

  • Faure S, Noyer JL, Carreel F, Horry JP, Bakry F, Lanaud C (1994) Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata). Curr Genet 25:265–269

    Article  CAS  PubMed  Google Scholar 

  • Greiner S, Sobanski J, Bock R (2015) Why are most organelle genomes transmitted maternally? BioEssays 37:80–94

    Article  CAS  PubMed  Google Scholar 

  • Havey MJ (1997) Predominant paternal transmission of the mitochondrial genome in cucumber. J Hered 88:232–235

    Article  Google Scholar 

  • Havey MJ, McCreight JD, Rhodes B, Taurick G (1998) Differential transmission of the Cucumis organellar genomes. Theor Appl Genet 97:122–128

    Article  CAS  Google Scholar 

  • Havey MJ, Park YH, Bartoszewski G (2004) The Psm locus controls paternal sorting of the cucumber mitochondrial genome. J Hered 95:492–497

    Article  CAS  PubMed  Google Scholar 

  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RA, Bendich AJ (2011) Distinguishing authentic mitochondrial and plastid DNAs from similar DNA sequences in the nucleus using the polymerase chain reaction. Curr Genet 57:287–295

    Article  CAS  PubMed  Google Scholar 

  • Lilly J, Bartoszewski G, Malepszy S, Havey M (2001) A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype. Curr Genet 40:144–151

    Article  CAS  PubMed  Google Scholar 

  • Malepszy S, Burza W, Smiech M (1996) Characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J Appl Genet 37:65–78

    Google Scholar 

  • Masoud SA, Johnson LB, Sorensen EL (1990) High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Theor Appl Genet 79:49–55

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Tang LY, Zhang L, Yamada H, Twell D, Sakamoto W (2011) A conserved, Mg2+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development. Plant Cell 23:1608–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCauley DE (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol 200:966–977

    Article  PubMed  Google Scholar 

  • Mogensen HL (1988) Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc Natl Acad Sci USA 85:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Shen J, Kere MG, Chen J-F (2013) Mitochondrial genome is paternally inherited in Cucumis allotetraploid (C.×hytivus) derived by interspecific hybridization. Sci Hort 155:39–42

    Article  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123:131–138

    Article  CAS  PubMed  Google Scholar 

  • Testolin R, Cipriani G (1997) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in the genus Actinidia. Theor Appl Genet 94:897–903

    Article  CAS  Google Scholar 

  • Wang DY, Zhang Q, Liu Y, Lin ZF, Zhang SX, Sun MX, Sodmergen (2010) The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance. Plant Cell 22:2402–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of Nanjing (China) Agricultural University and Zhejiang Academy of Agricultural Sciences to JS (31601764; 31572134; 2017C32004; 2016C02051-4-4) and Grant 2011-51181-30661 from the USDA Specialty Crops Research Initiative (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Havey.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

Names are necessary to report factually on available data; however, the United States Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Shou, W., Zhang, Y. et al. Rare maternal and biparental transmission of the cucumber mitochondrial DNA reveals sorting of polymorphisms among progenies. Theor Appl Genet 132, 1223–1233 (2019). https://doi.org/10.1007/s00122-018-03274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-03274-0

Navigation