Skip to main content
Log in

Advantages and limitations of multiple-trait genomic prediction for Fusarium head blight severity in hybrid wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Predictabilities for wheat hybrids less related to the estimation set were improved by shifting from single- to multiple-trait genomic prediction of Fusarium head blight severity.

Abstract

Breeding for improved Fusarium head blight resistance (FHBr) of wheat is a very laborious and expensive task. FHBr complexity is mainly due to its highly polygenic nature and because FHB severity (FHBs) is greatly influenced by the environment. Associated traits plant height and heading date may provide additional information related to FHBr, but this is ignored in single-trait genomic prediction (STGP). The aim of our study was to explore the benefits in predictabilities of multiple-trait genomic prediction (MTGP) over STGP of target trait FHBs in a population of 1604 wheat hybrids using information on 17,372 single nucleotide polymorphism markers along with indicator traits plant height and heading date. The additive inheritance of FHBs allowed accurate hybrid performance predictions using information on general combining abilities or average performance of both parents without the need of markers. Information on molecular markers and indicator trait(s) improved FHBs predictabilities for hybrids less related to the estimation set. Indicator traits must be observed on the predicted individuals to benefit from MTGP. Magnitudes of genetic and phenotypic correlations along with improvements in predictabilities made plant height a better indicator trait for FHBs than heading date. Thus, MTGP having only plant height as indicator trait already maximized FHBs predictabilities. Provided a good indicator trait was available, MTGP could reduce the impacts of genotype environment \(\times\) interaction on STGP for hybrids less related to the estimation set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLUE(s):

Best linear unbiased estimation(s)

BLUP(s):

Best linear unbiased prediction(s)

FHB(r/s):

Fusarium head blight (resistance/severity)

GCA:

General combining ability

GP:

Genomic prediction

GWAS:

Genome-wide association mapping studies

MT:

Multiple trait

QTL:

Quantitative trait loci

SCA:

Specific combining ability

SNP:

Single nucleotide polymorphism

ST:

Single trait

References

  • Arruda MP, Brown PJ, Lipka AE, Krill AM, Thurber C, Kolb FL (2015) Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8:1–12

    Article  Google Scholar 

  • Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, Dong Y, Foresman BJ, Kolb FL (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36:84. https://doi.org/10.1007/s11032-016-0508-5

    Article  Google Scholar 

  • Bai G-H, Shaner G, Ohm H (2000) Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet 100:1–8

    Article  Google Scholar 

  • Bao Y, Kurle JE, Anderson G, Yong ND (2015) Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm. Mol Breed 35:128. https://doi.org/10.1007/s11032-015-0324-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Borlaug NE (1968) Wheat breeding and its impact on world food supply. Australian Academy of Science, Australia, pp 1–36

    Google Scholar 

  • Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard P, Le Buanec B, Trottet M (2003) Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci 43:37–45

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013) BreedVision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830–2847

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel B (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Calus MPL, Veerkamp RF (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43:26. https://doi.org/10.1186/1297-9686-43-26

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerón-Rojas JJ, Sahagún-Castellanos J, Castillo-González F, Santacruz-Varela A, Crossa J (2008) A restricted selection index method based on eigenanalysis. J Agric Biol Environ Stat 13:440–457

    Article  Google Scholar 

  • Cerón-Rojas JJ, Crossa J, Arief VN, Basford K, Rutkoski J, Jarquín D, Alvarado G, Beyene Y, Semagn K, DeLacy I (2015) A genomic selection index applied to simulated and real data. G3 5:2155–2164

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461

    Article  CAS  PubMed  Google Scholar 

  • Chernoff H (1954) On the distribution of the likelihood ratio. Ann Math Stat 25:573–578

    Article  Google Scholar 

  • Dawson JC, Endelman JB, Heslot N, Crossa J, Poland J, Dreisigacker S, Manès Y, Sorrells ME, Jannink J-L (2013) The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res 154:12–22

    Article  Google Scholar 

  • Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341

    Article  CAS  PubMed  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Srinivasachary MT, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterházy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  CAS  PubMed  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Endelman JB, Jannink JL (2012) Shrinkage estimation of the realized relationship matrix. G3 2:1405–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Ronald Press Company, New York

    Google Scholar 

  • Gervais L, Dedryver F, Morlais J-Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    Article  CAS  PubMed  Google Scholar 

  • Gosman NS, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    Article  PubMed  Google Scholar 

  • Gowda M, Zhao Y, Würschum T, Longin CFH, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552–561

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:30. https://doi.org/10.1186/1471-2156-15-30

    Article  PubMed  PubMed Central  Google Scholar 

  • Häberle J, Schmolke M, Schweizer G, Korzun V, Ebmeyer E, Zimmermann G, Hartl L (2007) Effects of two major Fusarium head blight resistance QTL verified in a winter wheat backcross population. Crop Sci 47:1823–1831

    Article  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol Breed 27:71–84

    Article  Google Scholar 

  • Hayashi T, Iwata H (2013) A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC Bioinform 14:34. https://doi.org/10.1186/1471-2105-14-34

    Article  Google Scholar 

  • He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641–651

    Article  CAS  PubMed  Google Scholar 

  • Henderson CR, Quaas RL (1976) Multiple trait evaluation using relatives’ records. J Anim Sci 43:1188–1197

    Article  Google Scholar 

  • Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol 48:202–208

    Article  Google Scholar 

  • Hori T, Montcho D, Agbangla C, Ebana K, Futakuchi K, Iwata H (2016) Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials. Theor Appl Genet 129:2101–2115

    Article  PubMed  Google Scholar 

  • Jia Y, Jannink JL (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang GL, Ward RW (2006) Inheritance of resistance to Fusarium head blight in the wheat lines ‘CJ 9306’ and ‘CJ 9403’. Plant Breed 125:417–423

    Article  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis for genetic mapping of quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang Q, Ma L, Li J, Wang Z, Liu JF (2015a) Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity 115:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V, Ebmeyer E, Argillier O, Hinze M, Ling J, Röder MS, Ganal MW, Mette MF, Reif JC (2015b) Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity 114:318–326

    Article  CAS  PubMed  Google Scholar 

  • Kempthorne O, Nordskog AW (1959) Restricted selection indices. Biometrics 15:10–19

    Article  Google Scholar 

  • Klahr A, Zimmermann J, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8:e57500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, Gasperini D, Griffiths S (2016) Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Res 191:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-Analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Liu T, Qu H, Luo C, Li X, Shu D, Lund MS, Su G (2014) Genomic selection for the improvement of antibody response to newcastle disease and avian influenza virus in chickens. PLoS ONE 9:e112685

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhao Y, Gowda M, Longin CFH, Reif JC, Mette MF (2016) Predicting hybrid performances for quality traits through genomic-assisted approaches in Central European wheat. PLoS ONE 11:e0158635

    Article  PubMed  PubMed Central  Google Scholar 

  • Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    Article  PubMed  Google Scholar 

  • Marchal A, Legarra A, Tisné S, Carasco-Lacombe C, Manez A, Suryana E, Omoré A, Nouy B, Durand-Gasselin T, Sánchez L, Bouvet JM, Cros D (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36:2. https://doi.org/10.1007/s11032-015-0423-1

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221

    Article  Google Scholar 

  • Mesterházy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Article  Google Scholar 

  • Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313

    Article  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miedaner T (1997) Breeding wheat and rye for resistance to Fusarium disease. Plant Breed 116:201–220

    Article  Google Scholar 

  • Miedaner T, Gang G, Geiger HH (1996) Quantitative-genetic basis of aggressiveness of 42 Fusarium culmorum isolates for winter rye head blight. Plant Dis 80:500–504

    Article  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in soft European winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Miedaner T, Schulthess AW, Gowda M, Reif JC, Longin CFH (2017) High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat. Theor Appl Genet 130:461–470

    Article  CAS  PubMed  Google Scholar 

  • Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015a) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet 128:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Mirdita V, Liu G, Zhao Y, Miedaner T, Longin CFH, Gowda M, Mette MF, Reif JC (2015b) Genetic architecture is more complex for resistance to Septoria tritici blotch than to Fusarium head blight in Central European winter wheat. BMC Genom 16:430. https://doi.org/10.1186/s12864-015-1628-8

    Article  Google Scholar 

  • Möhring J, Piepho HP (2009) Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci 49:1977–1988

    Article  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Crossa J, Toledo FH, Pérez-Hernández O, Eskridge KM, Rutkoski J (2016) A genomic Bayesian multi-trait and multi-environment model. G3 6:2725–2744

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann K, Klukas C, Friedel S, Rischbeck P, Chen D, Entzian A, Stein N, Graner A, Kilian B (2015) Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant, Cell Environ 38:1980–1996

    Article  CAS  Google Scholar 

  • Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73

    Article  CAS  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323–332

    Article  CAS  PubMed  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Google Scholar 

  • Pisanello D (2014) EU regulations on chemicals in foods. In: Pisanello D (ed) Chemistry of foods: EU legal and regulatory approaches. SpringerBriefs in Molecular Science, Springer, Cham, pp 15–77

    Google Scholar 

  • Pszczola M, Strabel T, van Arendonk JAM, Calus MPL (2012) The impact of genotyping different groups of animals on accuracy when moving from traditional to genomic selection. J Dairy Sci 95:5412–5421

    Article  CAS  PubMed  Google Scholar 

  • Pszczola M, Veerkamp RF, de Haas Y, Wall E, Strabel T, Calus MPL (2013) Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. Animal 7:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 21 June 2016

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells ME (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

    Article  CAS  Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, González Pérez L, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 6:2799–2808

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos JPR, Vasconcellos RCC, Pires LPM, Balestre M, Von Pinho RG (2016) Inclusion of dominance effects in the multivariate GBLUP model. PLoS ONE 11:e0152045

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  CAS  PubMed  Google Scholar 

  • Schrag TA, Frisch M, Dhillon BS, Melchinger AE (2009) Marker-based prediction of hybrid performance in maize single-crosses involving doubled haploids. Maydica 54:353–362

    Google Scholar 

  • Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y (2016) Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor Appl Genet 129:273–287

    Article  CAS  PubMed  Google Scholar 

  • Schulthess AW, Reif JC, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Ganal MW, Röder MS, Jiang Y (2017) The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). J Exp Bot 68:4089–4101

    Article  PubMed  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Gordillo A, Karaman Z, Knaak C, Piepho HP (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538

    Article  Google Scholar 

  • Searle SR (2006) Matrix algebra useful for statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Snijders CHA (1990) The inheritance of resistance to head blight caused by Fusarium culmorum in winter wheat. Euphytica 50:11–18

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Varona L, Gomez-Raya L, Rauw WM, Clop A, Ovilo C, Noguera JL (2004) Derivation of a Bayes factor to distinguish between linked or pleiotropic quantitative trait loci. Genetics 166:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014a) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom 15:556. https://doi.org/10.1186/1471-2164-15-556

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, International Wheat Genome Sequencing C (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech J 12:787–796

    Article  CAS  Google Scholar 

  • Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2016) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118:302–310

    Article  PubMed  Google Scholar 

  • Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat 9:60–62

    Article  Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrels ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486

    Article  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Würschum T, Longin CFH, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112:15624–15629

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was conducted within the scope of the HYWHEAT project funded by BMBF (Grant no. FKZ031–5945D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Reif.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

All experiments were performed under the current laws of Germany.

Additional information

Communicated by Laurence Moreau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulthess, A.W., Zhao, Y., Longin, C.F.H. et al. Advantages and limitations of multiple-trait genomic prediction for Fusarium head blight severity in hybrid wheat (Triticum aestivum L.). Theor Appl Genet 131, 685–701 (2018). https://doi.org/10.1007/s00122-017-3029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-3029-7

Navigation