QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population

Abstract

Key message

Host resistances in PI 197088 cucumber to downy and powdery mildew pathogens are conferred by 11 (3 with major effect) and 4 (1 major effect) QTL, respectively, and three of which are co-localized.

Abstract

The downy mildew (DM) and powdery mildew (PM) are the two most important foliar diseases of cucurbit crops worldwide. The cucumber accession PI 197088 exhibits high-level resistances to both pathogens. Here, we reported QTL mapping results for DM and PM resistances with 148 recombinant inbred lines from a cross between PI 197088 and the susceptible line ‘Coolgreen’. Phenotypic data on responses to natural DM and PM infection were collected in multi-year and multi-location replicated field trials. A high-density genetic map with 2780 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing and 55 microsatellite markers was developed, which revealed genomic regions with segregation distortion and mis-assemblies in the ‘9930’ cucumber draft genome. QTL analysis identified 11 and 4 QTL for DM and PM resistances accounting for more than 73.5 and 63.0% total phenotypic variance, respectively. Among the 11 DM resistance QTL, dm5.1, dm5.2, and dm5.3 were major-effect contributing QTL, whereas dm1.1, dm2.1, and dm6.2 conferred susceptibility. Of the 4 QTL for PM resistance, pm5.1 was the major-effect QTL explaining 32.4% phenotypic variance and the minor-effect QTL pm6.1 contributed to disease susceptibility. Three PM QTL, pm2.1, pm5.1, and pm6.1, were co-localized with DM QTL dm2.1, dm5.2, and dm6.1, respectively, which was consistent with the observed linkage of PM and DM resistances in PI 197088. The genetic architecture of DM resistance in PI 197088 and another resistant line WI7120 (PI 330628) was compared, and the potential of using PI 197088 in cucumber breeding for downy and powdery mildew resistances is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Arends D, Prins P, Broman KW, Jansen RC (2014) Tutorial-multiple-QTL mapping (MQM) analysis for R/qtl. http://www.rqtl.org/tutorials/MQM-tour.pdf. Accessed Nov 2017

  3. Bartholome J, Mandrou E, Mabiala A et al (2015) High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytol 206:1283–1296

    CAS  Article  PubMed  Google Scholar 

  4. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Google Scholar 

  5. Berg JA, Appiano M, Martínez MS et al (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243

    Article  PubMed  PubMed Central  Google Scholar 

  6. Block CC, Reitsma KR (2005) Powdery mildew resistance in the US National plant germplasm system cucumber collection. Hortscience 40:416–420

    Google Scholar 

  7. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  Article  PubMed  Google Scholar 

  8. Caldwell D, Chan E, de Vries J et al (2011) Methods and compositions for identifying downy mildew resistant cucumber plants. United States patent US 2011/0126309 A1

  9. Call AD, Criswell AD, Wehner TC et al (2012a) Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. Hortscience 47:171–178

    Google Scholar 

  10. Call AD, Criswell AD, Wehner TC et al (2012b) Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci 52:577–592

    CAS  Google Scholar 

  11. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST plus: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  12. Cavagnaro PF, Senalik DA, Yang L et al (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569

    Article  Google Scholar 

  13. Clark LR (1975) Powdery mildew resistance in plant introductions of cucumber in Iowa. Plant Dis Report 59:1024–1028

    Google Scholar 

  14. Cockerham CC (1983) Covariances of relatives from self-fertilization. Crop Sci 23:1177–1180

    Article  Google Scholar 

  15. Cohen Y, VandenLangenberg KM, Wehner TC et al (2015) Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology 105:998–1012

    Article  PubMed  Google Scholar 

  16. El Jack A, Munger H (1983) Two sources conferring partial dominant resistance to powdery mildew (Sphaerotheca fuliginea Poll.) in cucumber. Cucurbit Genet Coop Rep 6:7–8

    Google Scholar 

  17. Epps W, Barnes W (1952) The increased susceptibility of the Palmetto cucumber to downy mildew in South Carolina. Plant Dis Report 36:14–15

    Google Scholar 

  18. Fanourakis NE, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Article  Google Scholar 

  19. Fukino N, Yoshioka Y, Sugiyama M et al (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277

    CAS  Article  Google Scholar 

  20. Gao D, Appiano M, Huibers RP et al (2015) Natural loss-of-function mutation of EDR1 conferring resistance to tomato powdery mildew in Arabidopsis thaliana accession C24. Mol Plant Pathol 16:71–82

    CAS  Article  PubMed  Google Scholar 

  21. Hackett C, Broadfoot L (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    CAS  Article  PubMed  Google Scholar 

  22. He X, Li Y, Pandey S et al (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    CAS  Article  PubMed  Google Scholar 

  23. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  Article  PubMed  Google Scholar 

  24. Huibers RP, Loonen AEHM, Gao D et al (2013) Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS One 8:e67467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Jamann T, Balint-Kurti P, Holland JB (2015) QTL mapping using high-throughput sequencing. Springer Science + Business Media, New York

    Google Scholar 

  26. Jenkins SF, Wehner TC (1983) A system for the measurement of foliar diseases of cucumber. Cucurbit Genet Coop Rep 6:10–12

    Google Scholar 

  27. Kooistra E (1968) Powdery mildew resistance in cucumber. Euphytica 17:236–244

    Google Scholar 

  28. Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  Article  PubMed  Google Scholar 

  29. Lebeda A, Urban J (2007) Temporal changes in pathogenicity and fungicide resistance in Pseudoperonospora cubensis populations. Acta Hortic 731:327–336

    CAS  Article  Google Scholar 

  30. Lebeda A, Pavelková J, Sedláková B, Urban J (2013) Structure and temporal shifts in virulence of Pseudoperonospora cubensis populations in the Czech Republic. Plant Pathol 62:336–345

    Article  Google Scholar 

  31. Liu L, Yuan X, Cai R et al (2008) Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156:691–697

    Article  Google Scholar 

  32. Lorieux M, Goffinet B, Perrier X et al (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    CAS  Article  PubMed  Google Scholar 

  33. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lyttle T (1991) Segregation distorters. Annu Rev Genet 25:511–557

    CAS  Article  PubMed  Google Scholar 

  35. Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Morishita M, Sugiyama K, Saito T, Sakata Y (2003) Review: powdery mildew resistance in cucumber. Jpn Agric Res Q 37:7–14

    Article  Google Scholar 

  37. Nie J, He H, Peng J et al (2015a) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7

    Article  Google Scholar 

  38. Nie J, Wang Y, He H et al (2015b) Loss-of-Function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1–14

    CAS  Article  Google Scholar 

  39. Oerke E, Steiner U, Dehne H, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    CAS  Article  PubMed  Google Scholar 

  40. Pan Y, Liang X, Gao M et al (2017) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    CAS  Article  PubMed  Google Scholar 

  41. Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565

    CAS  Article  PubMed  Google Scholar 

  42. Pérez-García A, Romero D, FernÁndez-OrtuÑo D et al (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160

    Article  PubMed  Google Scholar 

  43. Quesada-Ocampo LM, Granke L, Olsen J et al (2012) The genetic structure of Pseudoperonospora cubensis populations. Plant Dis 96:1459–1470

    CAS  Article  Google Scholar 

  44. Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roque A, Adsuar J (1939) New cucumber varieties resistant to the downy mildew. In: Annual Report Agri Expt Station of Puerto Rico fiscal year 1937–1938, pp 45–46

  46. Rubinstein M, Katzenellenbogen M, Eshed R et al (2015) Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 10:e0124101

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sakata Y, Kubo N, Morishita M et al (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250

    CAS  Article  PubMed  Google Scholar 

  48. Shetty N, van Kooten H, Sipeyre B et al (2014) Downy Mildew Resistant Cucumber Plants. United States patent US 8859859 B2

  49. Singh VK, Khan AW, Jaganathan D et al (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotech J 14:2110–2119

    CAS  Article  Google Scholar 

  50. Sitterly WR (1972) Breeding for disease resistance in cucurbits. Annu Rev Phytopathol 10:471–490

    Article  Google Scholar 

  51. Smith P (1948) Powdery mildew resistance in cucumber. Phytopathology 38:1027–1028

    Google Scholar 

  52. Staub JE, Dane F, Reitsma K et al (2002) The formation of test arrays and a core collection in cucumber using phenotypic and molecular marker data. J Am Soc Hortic Sci 127:558–567

    CAS  Google Scholar 

  53. Sun X, Liu D, Zhang X et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Szczechura W, Staniaszek M, Klosinska U, Kozik E (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostovzev in cucumber. Russ J Genet 51:974–979

    CAS  Article  Google Scholar 

  55. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  Article  PubMed  Google Scholar 

  56. Taylor J, Butler D (2015) ASMap: linkage map construction using the MSTmap algorithm. R package version 0.4-5. http://CRAN.R-project.org/package=ASMap. Accessed Nov 2017

  57. Van Damme M, Zeilmaker T, Elberse J et al (2009) Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 21:2179–2189

    Article  PubMed  PubMed Central  Google Scholar 

  58. Van Vliet GJA, Meysing WD (1974) Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.). Euphytica 23:251–255

    Article  Google Scholar 

  59. Van Vliet GJA, Meysing WD (1977) Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica 26:793–796

    Article  Google Scholar 

  60. VandenLangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). Dissertation, North Carolina State University

  61. VandenLangenberg KM, Wehner TC (2016) Downy mildew disease progress in resistant and susceptible cucumbers tested in the field at different growth stages. Hortscience 51:984–988

    Google Scholar 

  62. Wang Y, VandenLangenberg KM, Wehner TC et al (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    CAS  Article  PubMed  Google Scholar 

  63. Wei QZ, Wang YZ, Qin XD et al (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:10

    Article  Google Scholar 

  64. Win KT, Vegas J, Zhang C et al (2017) QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130:199–211

    CAS  Article  PubMed  Google Scholar 

  65. Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xu X, Xu R, Zhu B et al (2015) A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci 5:1–8

    Article  Google Scholar 

  68. Yang L, Koo D-H, Li Y et al (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    CAS  Article  PubMed  Google Scholar 

  69. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    CAS  Article  Google Scholar 

  70. Zhang L, Wang S, Li H et al (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082

    Article  PubMed  Google Scholar 

  71. Zhou Q, Miao H, Li S et al (2015) A sequencing-based linkage map of cucumber. Mol Plant 8:961–963

    Article  PubMed  Google Scholar 

  72. Zhu W, Huang L, Chen L et al (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:11

    Google Scholar 

  73. Zijlstra S, Groot SPC (1992) Search for novel genes for resistance to powdery mildew (Sphaerotheca fuliginea) in cucumber (Cucumis sativus). Euphytica 64:31–37

    Google Scholar 

  74. Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kristin Haider for technical help. This research is supported by a U.S. Department of Agriculture (USDA)-Specialty Crop Research Initiative grant (SCRI, project# 2011-51181-30661) and the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-51181-24285. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yiqun Weng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Sanwen Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2309 kb)

Supplementary material 2 (XLSX 369 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., VandenLangenberg, K., Wen, C. et al. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131, 597–611 (2018). https://doi.org/10.1007/s00122-017-3022-1

Download citation