Skip to main content
Log in

Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A QTL on sorghum chromosome SBI-06 putatively improves field emergence under low-temperature conditions.

Abstract

Low temperatures decisively limit seedling emergence and vigor during early growth of sorghum and, thus, strongly impair geographical expansion. To broaden sorghum cultivation to temperate regions, the establishment of cold-tolerant genotypes is a prioritized breeding goal. The present study aims at the quantification of seedling emergence and survival under chilling temperatures and the detection of marker–trait associations controlling temperature-related seedling establishment. A diversity set consisting of 194 biomass sorghum lines was subjected to extensive phenotyping comprising field trials and controlled environment experiments. The final emergence percentage (FEP) under field conditions was significantly reduced under cold stress. Broad-sense heritability was h 2 = 0.87 for FEP in the field and h 2 = 0.93 for seedling survival rate (SR) under controlled conditions. Correlations between FEP in the field and under controlled conditions were low; higher correlations were observed between field FEP and SR in controlled environments. Genome-wide association studies (GWAS) were conducted using 44,515 single nucleotide polymorphisms (SNPs) and revealed eight regions with suggestive marker–trait associations for FEP and SR on chromosomes SBI-01, -02, -03, -06, -09, and -10 (p < 5.7 × 10−5) and a significant association on SBI-06 for field FEP (p < 2.9 × 10−6). Although not significant under controlled conditions, SR of genotypes carrying the minor allele on the field FEP quantitative trait loci (QTL) on SBI-06 was on average 13.1% higher, while FEP under controlled conditions was on average 9.7% higher with a linearly decreasing effect with increasing temperatures (R 2 = 0.82). Promising candidate genes putatively conferring seedling cold tolerance were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York. ISBN 978-1-4614-0814-7

    Book  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    Article  CAS  PubMed  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: An R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  • Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Plant Biotechnol J 9:1112–1125

    Article  Google Scholar 

  • Bekele WA, Fiedler K, Shiringani A, Schnaubelt D, Windpassinger S, Uptmoor R et al (2014) Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant Cell Environ 37:707–723

    Article  CAS  PubMed  Google Scholar 

  • Bredemeijer GMM, Esselink G (1997) Glucose 6-phosphate dehydrogenase during cold-hardening in Lolium perenne. J Plant Physiol 145:565–569

    Article  Google Scholar 

  • Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28:391–402

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Chopra R, Burow G, Burke JJ, Gladman N, Xin Z (2017) Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biol 17:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB (2014) NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci 2:55

    Article  Google Scholar 

  • Crossa J, Fox PN, Pfeiffer WH, Rajaran S, Gauch HG Jr (1991) AMMA adjustment for statistical analysis of an international wheat yield trial. Theor Appl Genet 81:27–37

    Article  CAS  PubMed  Google Scholar 

  • De Mendiburu F (2009) Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU)

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom 9:516

    Article  Google Scholar 

  • Fiedler K, Bekele WA, Friedt W, Snowdon RJ, Stützel H, Zacharias A, Uptmoor R (2012) Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters. Theor Appl Genet 125:1647–1661

    Article  PubMed  Google Scholar 

  • Fiedler K, Bekele WA, Duensing R, Gründig S, Snowdon R, Stützel H et al (2014) Genetic dissection of temperature-dependent sorghum growth during juvenile development. Theor Appl Genet 127:1935–1948

    Article  PubMed  Google Scholar 

  • Fiedler K, Bekele WA, Matschegewski C, Snowdon R, Wieckhorst S, Zacharias A, Uptmoor R (2016) Cold tolerance during juvenile development in sorghum: a comparative analysis by genome-wide association and linkage mapping. Plant Breed 135:598–606

    Article  CAS  Google Scholar 

  • Gao X, Starmer J, Martin R (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369

    Article  PubMed  Google Scholar 

  • Gao X, Becker LC, Becker DM, Starmer JD, Province MA (2010) Avoiding the high Bonferroni penalty in genome-wide associations studies. Genet Epidemiol 34:100–105

    PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Becker HC, Tigerstedt P (1998) Quantitative and ecological aspects of plant breeding. Chapman & Hall, London

    Book  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420:135–144

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Lui J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  • Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116:541–553

    Article  PubMed  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Krasenski J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory network. J Exp Bot 63:1593–1608

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin. ISBN 3-540-58116-2

    Book  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. https://doi.org/10.1093/jxb/err210

    PubMed Central  Google Scholar 

  • Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seed. Planta 228:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Mahender A, Anandan A, Pradhan SK (2015) Early seedling vigour, an imperative trait for direct-seed rice: an overview on physio-morphological parameters and molecular markers. Planta 241:1027–1050

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • McConnell RI, Gardner CO (1979) Selection for cold germination in two corn populations. Crop Sci 19:765–768

    Article  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock JJ, Bakri AA (1976) Recurrent selection for cold tolerance in maize. Crop Sci 16:230–233

    Article  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation and gene expression. Plant Physiol 102:1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide associations studies of agroclimatic traits in sorghum. Proc Nat Acad Sci 110:453–458

    Article  CAS  PubMed  Google Scholar 

  • Mosely PR, Crosbie TM, Mock JJ (1984) Mass selection for improved cold and density tolerance of two maize populations. Euphytica 33:263–269

    Article  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Aiken RM, Vara Prasad PV, Xin Z, Yu J (2013) Water and radiation use efficiencies in sorghum. Agron J 105:649–656

    Article  Google Scholar 

  • Parra-Londono S, Kavka M, Samans B, Snowdon R, Wieckhorst S, Uptmoor R (2017) Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture related marker-trait associations. Ann Bot. https://doi.org/10.1093/aob/mcx157

    Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genom 2008:362451

    Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plants Sci 17:369–381

    Article  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Reddy BVS, Ramesh S, Kumar AA, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res 1:248–258

    Article  Google Scholar 

  • Revilla P, Malvar RA, Cartea ME, Butron A, Ordas A (2000) Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci 40:1579–1585

    Article  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Park SY, Paek NC (2015) The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells 38:390–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12:30–43

    Article  CAS  Google Scholar 

  • Savitch L, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Sharifi P (2008) Inheritance of cold tolerance in rice at the germination stage. Asian J Plant Sci 7:465–489

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43:W589–W598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CW and Frederiksen RA (2000) Sorghum—origin, history, technology and production. John Wiley and Sons Inc. ISBN: 0-471-24237-3

  • Srivastav A, Mehta S, Lindlof A, Bhargava S (2010) Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression. Plant Signal Behav 5(7):775–784

    Article  CAS  PubMed Central  Google Scholar 

  • Stich B, Möhring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparisson of mixed model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Wang YH, Sastry DVSSR, Dwivendi SL, Prasad PVV, Burrell AM, Klein RR, Morris GP, Klein PE (2016) Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions. Genome 59:137–145

    Article  CAS  PubMed  Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genom 274:506–514

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Upadhyaya HD, Kole C (2015) Genetics, genomics and breeding of sorghum. CRC Press Taylor & Francis Group. ISBN: 978-1-4822-1008-8

  • Xie L, Tan Z, Zhou Y, Xu R, Feng L, Xing Y, Qi X (2014) Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J Integr Plant Biol 56:749–759

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide associations studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tuinstra MR, Claassen MM, Gordon WB, Witt MD (2004) Analysis of cold tolerance in sorghum under controlled environment conditions. Field Crops Res 85:21–30

    Article  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near isogenic line. Theor Appl Genet 121:895–905

    Article  CAS  PubMed  Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the German Federal Ministry of Education and Research (BMBF), ERA-net Bioenergy and the Fachagentur Nachwachsende Rohstoffe e.V. is gratefully acknowledged. Technical assistance provided by Katharina Meyer and contributions to the main text body by Claudia Matschegewski are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Uptmoor.

Ethics declarations

Funding

KF and parts of the study (phenotyping) were funded by the German Federal Ministry of Education and Research (BMBF, BioEnergie 2021, Project no. 03154211). Genotyping, SPL and BS were funded by ERA-net Bioenergy and the Fachagentur Nachwachsende Rohstoffe e.V. (FKZ 22001213).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hai-Chun Jing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Londono, S., Fiedler, K., Kavka, M. et al. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theor Appl Genet 131, 581–595 (2018). https://doi.org/10.1007/s00122-017-3021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-3021-2

Navigation