Skip to main content

Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses

Abstract

Key message

A stripe rust resistance gene YrZH22 was mapped by combined BSR-Seq and comparative genomics analyses to a 5.92 centimorgan (cM) genetic interval spanning a 4 Mb physical genomic region on wheat chromosome 4BL1.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases of wheat and severely threatens wheat production worldwide. The widely grown Chinese wheat cultivar Zhoumai 22 is highly resistant to the current prevailing PST race CYR34 (V26). Genetic analysis of F5:6 and F6:7 recombinant inbred line (RIL) populations indicated that adult-plant stripe rust resistance in Zhoumai 22 is controlled by a single gene, temporarily designated YrZH22. By applying bulked segregant RNA-Seq (BSR-Seq), 7 SNP markers were developed and SNP mapping showed that YrZH22 is located between markers WGGB105 and WGGB112 on chromosome arm 4BL. The corresponding genomic regions of the Chinese Spring 4BL genome assembly and physical map of Aegilops tauschii 4DL were selected for comparative genomics analyses to develop nine new polymorphic markers that were used to construct a high-resolution genetic linkage map of YrZH22. YrZH22 was delimited in a 5.92 cM genetic interval between markers WGGB133 and WGGB146, corresponding to 4.1 Mb genomic interval in Chinese Spring 4BL and a 2.2 Mb orthologous genomic region in Ae. tauschii 4DL. The genetic linkage map of YrZH22 will be valuable for fine mapping and positional cloning of YrZH22, and can be used for marker-assisted selection in wheat breeding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67:715–725

    CAS  Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chen WQ, Wellings C, Chen XM, Kang ZS, Liu TG (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15:433–446

    Article  PubMed  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  Article  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Han DJ, Wang N, Jiang Z, Wang QL, Wang XJ et al (2012) Characterization and inheritance of resistance to stripe rust in the wheat line Guinong775. Hereditas 34:1607–1613

    CAS  Article  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    CAS  Article  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    CAS  Article  PubMed  Google Scholar 

  • Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 10:366–371

    Google Scholar 

  • Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F et al (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3:5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Li DL, Liu SZ, Ma XL, Dietrich CR et al (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang JC, Fu BS, Tang WB, Khan NU, Li N et al (2016) Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Genome. doi:10.3835/plantgenome2015.09.0084

    Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmaker/eXP3.0 Whitehead Institute Techn rep, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the causes of stripe rust of wheat) in North America, 1968–87. USDA-ARS Techn Bull No. 1788

  • Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    CAS  Article  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu TG, Peng YL, Chen WQ, Zhang ZY (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis 94:1163

    Article  Google Scholar 

  • Liu SZ, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X et al (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    CAS  Article  PubMed  Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang XM et al (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755

    CAS  Article  PubMed  Google Scholar 

  • Lu Y, Wang MN, Chen XM, See D, Chao SM et al (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 127:1449–1459

    CAS  Article  PubMed  Google Scholar 

  • Lu P, Qin JX, Wang GX, Wang LL, Wang ZZ et al (2015) Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat. Theor Appl Genet 128:1595–1603

    CAS  Article  PubMed  Google Scholar 

  • Lu P, Liang Y, Li DL, Wang ZZ, Li WB et al (2016) Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). Theor Appl Genet 129:577–589

    CAS  Article  PubMed  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y et al (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092

    Article  PubMed  Google Scholar 

  • Mayer KFX, Rogers J, El Dole J, Pozniak C, Eversole K et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S et al (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    CAS  Article  PubMed  Google Scholar 

  • Rio D, Ares MJ, Hannon G, Nilsen T (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 2010:pdb prot5439

    Article  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 24:8014–8018

    Article  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    CAS  Article  PubMed  Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M et al (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L et al (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    CAS  Article  PubMed  Google Scholar 

  • Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605

    Article  Google Scholar 

  • Wang ZZ, Li HW, Zhang D, Guo L, Chen JJ et al (2015) Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128:365–373

    CAS  Article  PubMed  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    CAS  Article  PubMed  Google Scholar 

  • You FM, Huo NX, Gu YQ, Luo MC, Ma YQ et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253

    Article  Google Scholar 

  • Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ et al (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFD0101802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingjie Cao, Guihong Yin or Zhiyong Liu.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Communicated by Beat Keller.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, J., Zhang, H. et al. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130, 2191–2201 (2017). https://doi.org/10.1007/s00122-017-2950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2950-0