Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank

Abstract

Key message

Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs.

Abstract

Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees–Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees–Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

GBS:

Genotyping-by-sequencing

GWAS:

Genome-wide association study

SNP:

Single-nucleotide polymorphism

MAF:

Minor allele frequency

IBS:

Identity by state

PCoA:

Principal coordinates analysis

PO:

Posterior odds

ASI:

Anthesis-silking interval

References

  1. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664. doi:10.1101/gr.094052.109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ayrault S, Gouesnard B, Panouille A, Boyat A (1999) Evaluation of late inbred lines in order to improve early single maize crosses by the biadditive model and predictive genetic models. Maydica 44(3):183–194

    Google Scholar 

  3. Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahalain A, Singh IS, Gupta HS (2006) Mapping QTLs for popping ability in a popcorn x flint corn cross. Theor Appl Genet 112(7):1392–1399. doi:10.1007/s00122-006-0242-1

    CAS  Article  PubMed  Google Scholar 

  4. Baker R (1984) Some of the open pollinated varieties that contributed the most to modern hybrid corn. In: Proc. Annu. Illinois Corn Breeders School, Champaign, pp 1–19

  5. Barriere Y, Charcosset A, Denoue D, Madur D, Bauland C, Laborde J (2010) Genetic variation for lignin content and cell wall digestibility in early maize lines derived from ancient landraces. Maydica 55(1):65–74

    Google Scholar 

  6. Bertolini M, Bosio M, Bressan M, Coppolino F, Difonzo N, Gentinetta E, Introzzi F, Lupotto E, Maggiore T, Perenzin M, Snidaro M, Valoti P, Verderio A, Bianchi A, Soave C, Lorenzoni C, Motto M, Salamini F (1991) Breeding activity of the maize station of Bergamo—synthetic gene pools and inbreds released in the period 1975-1989. Maydica 36(1):87–106

    Google Scholar 

  7. Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One. doi:10.1371/journal.pone.0071377

    Google Scholar 

  8. Bouchet S, Bertin P, Presterl T, Jamin P, Coubriche D, Gouesnard B, Laborde J, Charcosset A (2017) Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity (Edinb) 118(3):249–259. doi:10.1038/hdy.2016.88

    CAS  Article  Google Scholar 

  9. Brandenburg JT, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas SD, Tenaillon MI (2017) Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet 13(3):e1006666. doi:10.1371/journal.pgen.1006666

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brandolini A, Brandolini A (2009) Maize introduction, evolution and diffusion in Italy. Maydica 54(2–3):233–242

    Google Scholar 

  11. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. doi:10.1371/journal.pgen.1002383

    Google Scholar 

  12. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210–223. doi:10.1016/j.ajhg.2009.01.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Buckner B, Kelson TL, Robertson DS (1990) Cloning of the Y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2(9):867–876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Calderon CI, Yandell BS, Doebley JF (2016) Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS One. doi:10.1371/journal.pone.0150276

    Google Scholar 

  15. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172(4):2449–2463. doi:10.1534/genetics.105.048603

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Cartea ME, Revilla P, Butron A, Malvar RA, Ordas A (1999) Do second cycle maize inbreds preserve the European flint heterotic group? Crop Sci 39(4):1060–1064

    Article  Google Scholar 

  17. Derieux M, Montalant Y, Burgoffer A, Dorvillez D, Duburcq JB (1978) Maize adaptation to the climatic conditions of Northern France. Ann De L Amelior Des Plantes 28(5):529–566

    Google Scholar 

  18. Djemel A, Romay MC, Revilla P, Khelifi L, Ordas A, Ordas B (2013) Genomic regions affecting fitness of the sweet corn mutant sugary1. J Agric Sci 151(3):396–406. doi:10.1017/s0021859612000391

    CAS  Article  Google Scholar 

  19. Doebley JF, Goodman MM, Stuber CW (1986) Exceptional genetic-divergence on Northern Flint corn. Am J Bot 73(1):64–69. doi:10.2307/2444278

    Article  Google Scholar 

  20. Doebley J, Wendel JD, Smith JSC, Stuber CW, Goodman MM (1988) The origin of Cornbelt maize—the isozyme evidence. Econ Bot 42(1):120–131. doi:10.1007/bf02859042

    Article  Google Scholar 

  21. Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178(4):2433–2437. doi:10.1534/genetics.107.084830

    Article  PubMed  PubMed Central  Google Scholar 

  22. Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003) Gene dosage effects on carotenoid concentration in maize grain. Maydica 48(3):183–190

    Google Scholar 

  23. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  25. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44(6):1054–1064. doi:10.1111/j.1365-313X.2005.02591.x

    CAS  Article  PubMed  Google Scholar 

  26. Foll M, Gaggiotti O (2008) A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: a Bayesian Perspective. Genetics 180(2):977–993. doi:10.1534/genetics.108.092221

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164. doi:10.1002/spe.4380211102

    Article  Google Scholar 

  28. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6(12):e28334. doi:10.1371/journal.pone.0028334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Gao XY, Stamier J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32(4):361–369. doi:10.1002/gepi.20310

    Article  PubMed  Google Scholar 

  30. Gerdes JT, Tracy WF (1994) Diversity of historically important sweet corn inbreds as estimated by RFLPs, morphology, isozymes, and pedigree. Crop Sci 34(1):26–33

    CAS  Article  Google Scholar 

  31. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. doi:10.1371/journal.pone.0090346

    PubMed  PubMed Central  Google Scholar 

  32. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117. doi:10.1126/science.1177837

    CAS  Article  PubMed  Google Scholar 

  33. Grotewold E, Gray J (2009) Maize transcription factors. In: Bennetzen JL, Hake S (eds) Maize handbook: genetics and genomics, pp 693–713

  34. Kantety RV, Zeng XP, Bennetzen JL, Zehr BE (1995) Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (issr) amplification. Mol Breed 1(4):365–373. doi:10.1007/bf01248414

    CAS  Article  Google Scholar 

  35. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8(10):U833–U894. doi:10.1038/nmeth.1681

    Article  Google Scholar 

  36. Liu KJ, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165(4):2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang TY, Li Y, Li YX, Semagn K, Zhang XC, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun. doi:10.1038/ncomms7914

    Google Scholar 

  38. Mangelsdorf P, Smit C (1949) A discovery of remains of primitive maize in New Mexico. J Hered 40:39–43

    CAS  Article  PubMed  Google Scholar 

  39. Messmer MM, Melchinger AE, Boppenmaier J, Herrmann RG, Brunklaus-Jung E (1992) RFLP analyses of early-maturing European maize germ plasm I. Genetic diversity among flint and dent inbreds. Theor Appl Genet 83(8):1003–1012

    CAS  Article  PubMed  Google Scholar 

  40. Mikel MA, Dudley JW (2006) Evolution of north American dent corn from public to proprietary germplasm. Crop Sci 46(3):1193–1205. doi:10.2135/cropsci2005.10-0371

    Article  Google Scholar 

  41. Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao PX, Hearne S, Jampatong C, Laloe D, Muthamia Z, Nguyen T, Prasanna BM, Taba S, Xie CX, Yunus M, Zhang S, Warburton ML, Charcosset A (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. TAG Theor Appl Genet 126(11):2671–2682. doi:10.1007/s00122-013-2164-z

    CAS  Article  PubMed  Google Scholar 

  42. MorenoGonzalez J, RamosGourcy F, Losada E (1997) Breeding potential of European flint and earliness-selected US corn belt dent maize populations. Crop Sci 37(5):1475–1481

    Article  Google Scholar 

  43. Mumm RH, Dudley JW (1994) A classification of 148 US maize inbreds. 1. Cluster-analysis based on RFLPs. Crop Sci 34(4):842–851

    Article  Google Scholar 

  44. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70(12):3321–3323. doi:10.1073/pnas.70.12.3321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15(8):1795–1806. doi:10.1105/tpc.012526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang ZW, Millard MJ, Gardner CAC, McMullen MD, Holland JB, Bradbury PJ, Buckler ES (2014) The genetic architecture of maize height. Genetics 196(4):1337. doi:10.1534/genetics.113.159152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi:10.1086/519795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106(5):895–903. doi:10.1007/s00122-002-1140-9

    CAS  Article  PubMed  Google Scholar 

  49. Reif JC, Fischer S, Schrag TA, Lamkey KR, Klein D, Dhillon BS, Utz HF, Melchinger AE (2010) Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theor Appl Genet 120(2):301–310. doi:10.1007/s00122-009-1055-9

    Article  PubMed  Google Scholar 

  50. Revilla P, Tracy WF (1995) Isozyme variation and phylogenetic-relationships among open-pollinated sweet corn cultivars. Crop Sci 35(1):219–227

    Article  Google Scholar 

  51. Revilla P, Soengas P, Cartea ME, Malvar RA, Ordas A (2003) Isozyme variability among European maize populations and the introduction of maize in Europe. Maydica 48(2):141–152

    Google Scholar 

  52. Revilla P, Butron A, Rodriguez VM, Malvar RA, Ordas A (2009) Identification of genes related to germination in aged maize seed by screening natural variability. J Exp Bot 60(14):4151–4157. doi:10.1093/jxb/erp249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE, Malvar RA, Moreno-Gonzalez J, Nicolas S, Madur D, Combes V, Dumas F, Altmann T, Brunel D, Ouzunova M, Flament P, Dubreuil P, Charcosset A, Mary-Huard T (2014a) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197(1):375–387. doi:10.1534/genetics.113.159731

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rincent R, Nicolas S, Bouchet S, Altmann T, Brunel D, Revilla P, Malvar RA, Moreno-Gonzalez J, Campo L, Melchinger AE, Schipprack W, Bauer E, Schoen CC, Meyer N, Ouzunova M, Dubreuil P, Giauffret C, Madur D, Combes V, Dumas F, Bauland C, Jamin P, Laborde J, Flament P, Moreau L, Charcosset A (2014b) Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theor Appl Genet 127(11):2313–2331. doi:10.1007/s00122-014-2379-7

    CAS  Article  PubMed  Google Scholar 

  55. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55. doi:10.1186/gb-2013-14-6-r55

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104(27):11376–11381. doi:10.1073/pnas.0704145104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  58. Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8(2):e57234. doi:10.1371/journal.pone.0057234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Swarts K, Li HH, Navarro JAR, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. doi:10.3835/plantgenome2014.05.0023

    Google Scholar 

  60. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  61. Tenaillon MI, Charcosset A (2011) A European perspective on maize history. Comp Rendus Biol 334(3):221–228. doi:10.1016/j.crvi.2010.12.015

    Article  Google Scholar 

  62. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Jesus Sanchez G, Doebley J (2008) Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot 95(10):1240–1253

    Article  PubMed  Google Scholar 

  63. Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51(6):2569. doi:10.2135/cropsci2010.08.0465

    Article  Google Scholar 

  64. Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110(42):16969–16974. doi:10.1073/pnas.1310949110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208. doi:10.1038/ng1702

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Project Amaizing ANR-10-BTBR-01. We are grateful to Geert Kleijer from Agroscope Changins-Wädenswil of Nyon (ETH Zurich) Switzerland; Wolfgang Schipprack from Universität Hohenheim (UH) of Eckartsweier, Germany; Rita Redaelli from Unita Di Ricerca per la Maiscoltura of Bergamo (ISC), Italy; Amando Ordás from Misión Biológica de Galicia of Pontevedra (CSIC), Spain; Ángel Álvarez from Estacion Experimental de Aula Dei of Zaragoza, Spain; José Ignacio Ruiz de Galarreta from Centro Neiker de Arkaute of Vitoria, Spain; colleagues from Centro de Investigaciones Agrarias de Mabegondo (CIAM), Spain; Guillermo Eyhérabide and colleagues from Instituto National de Tecnologia Agropecuaria (INTA), Argentina; colleagues from Instytut Hodowli Aklimatyzacji Roslin (IHAR), Poland; the “Association pour l’étude et l’amélioration du maïs” (PROMAIS), France who contributed genetic material included in this study. We are grateful to Marie-Christine Le Paslier, Aurélie Bérard from Etude du Polymorphisme des Génomes Végétaux (INRA-EPGV), Anne Boland from Institut de Génomique, Centre National de Génotypage (CEA-IG/CNG), and their staff for quality control of DNA normalisation and DNA plate composition. We are grateful to Ed Buckler and colleagues for GBS data production at Cornell.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brigitte Gouesnard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments reported in this study comply with the current laws of France.

Additional information

Communicated by Thomas Lubberstedt.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouesnard, B., Negro, S., Laffray, A. et al. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theor Appl Genet 130, 2165–2189 (2017). https://doi.org/10.1007/s00122-017-2949-6

Download citation