Omics-based hybrid prediction in maize

Abstract

Key message

Complementing genomic data with other “omics” predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits.

Abstract

Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream “omics” data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of “omics” data. Here, we evaluate several “omics” predictors—genomic, transcriptomic and metabolic data—measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream “omics” data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Argillier O, Méchin V, Barrière Y (2000) Inbred line evaluation and breeding for digestibility-related traits in forage maize. Crop Sci 40(6):1596–1600. doi:10.2135/cropsci2000.4061596x

    Article  Google Scholar 

  2. Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, Van Dongen JT, Sulpice R, Stitt M (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59(5):824–839. doi:10.1111/j.1365-313X.2009.03902.x

    CAS  Article  Google Scholar 

  3. Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW (2017) Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci USA 114(4):645–650. doi:10.1073/pnas.1613458114

    PubMed  PubMed Central  Article  Google Scholar 

  4. Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  5. Brem RB, Storey JD, Whittle J, Kruglyak L (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436(7051):701–3. doi:10.1038/nature03865

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Brown AA, Buil A, Vinuela A, Lappalainen T, Zheng HF, Richards JB, Small KS, Spector TD, Dermitzakis ET, Durbin R (2014) Genetic interactions affecting human gene expression identified by variance association mapping. eLife 3:1–16. doi:10.7554/eLife.01381

    Google Scholar 

  7. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210–223. doi:10.1016/j.ajhg.2009.01.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments, ASReml-R reference manual. Training and development series, No QE02001. QLD Department of Primary Industries and Fisheries, Brisbane

  9. Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67(5):869–884. doi:10.1111/j.1365-313X.2011.04640.x

    CAS  PubMed  Article  Google Scholar 

  10. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48. doi:10.1038/nrg3575

    CAS  PubMed  Article  Google Scholar 

  11. Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red winter wheat regions of the United States. Proc Natl Acad Sci USA 83(15):5583–5586. doi:10.1073/pnas.83.15.5583

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Gonçalves JM, Webb AAR (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci USA 108(12):5104–5109. doi:10.1073/pnas.1015452108. arXiv:1408.1149

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Dan Z, Hu J, Zhou W, Yao G, Zhu R, Zhu Y, Huang W (2016) Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.). Nat Sci Rep 6(October 2015):1–9. doi:10.1038/srep21732

  14. de Abreu e Lima F, Westhues M, Willmitzer L, Melchinger AE, Nikoloski Z (2017) Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. Plant J 90(2):319–329. doi:10.1111/tpj.13495

    CAS  PubMed  Article  Google Scholar 

  15. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  16. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Pearson Prentice, Harlow, UK

    Google Scholar 

  17. Fernie AR (2007) The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry 68(22–24):2861–2880. doi:10.1016/j.phytochem.2007.07.010

    CAS  PubMed  Article  Google Scholar 

  18. Fernie AR, Stitt M (2012) On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol 158(3):1139–45. doi:10.1104/pp.112.193235

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Fiévet JB, Dillmann C, de Vienne D (2010) Systemic properties of metabolic networks lead to an epistasis-based model for heterosis. Theor Appl Genet 120(2):463–73. doi:10.1007/s00122-009-1203-2

    PubMed  Article  Google Scholar 

  20. Francesconi M, Lehner B (2014) The effects of genetic variation on gene expression dynamics during development. Nature 505(7482):208–11. doi:10.1038/nature12772

    CAS  PubMed  Article  Google Scholar 

  21. Frisch M, Thiemann A, Fu J, Schrag TA, Scholten S, Melchinger AE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120(2):441–450. doi:10.1007/s00122-009-1204-1

    CAS  PubMed  Article  Google Scholar 

  22. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PloS One 6(12):e28,334. doi:10.1371/journal.pone.0028334

  23. Geiger HH, Melchinger AE, Schmidt G (1986) Analysis of factorial crosses between flint and dent maize inbred lines for forage performance and quality traits. In: Dolstra O, Miedema P (eds) Breeding of silage maize. Pudoc, Wageningen, pp 147–154

    Google Scholar 

  24. Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2017) mvtnorm: multivariate normal and t distributions. http://cran.r-project.org/package/mvtnorm

  25. Gerke JP, Edwards JW, Guill KE, Ross-Ibarra J, McMullen MD (2015) The genomic impacts of drift and selection for hybrid performance in maize. Genetics 201(3):1201–1211. doi:10.1534/genetics.115.182410. arXiv:1307.7313

  26. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645. doi:10.1176/appi.ajp.160.4.636

    PubMed  Article  Google Scholar 

  27. Grieder C, Mittweg G, Dhillon B, Montes J, Orsini E, Melchinger AE (2011) Determination of methane fermentation yield and its kinitics by near infrared spectroscopy and chemical composition in maize. J Near Infrared Spectrosc 19(6):463–477

    CAS  Article  Google Scholar 

  28. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124(6):981–988. doi:10.1007/s00122-011-1762-x

    PubMed  Article  Google Scholar 

  29. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113(5):831–845. doi:10.1007/s00122-006-0335-x

    CAS  PubMed  Article  Google Scholar 

  30. Guo Z, Magwire MM, Basten CJ, Xu Z, Wang D (2016) Evaluation of the utility of gene expression and metabolic information for genomic prediction in maize. Theor Appl Genet 129(12):2413–2427. doi:10.1007/s00122-016-2780-5

    CAS  PubMed  Article  Google Scholar 

  31. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33(2):1–22. doi:10.1002/ana.22635. arXiv:1501.0228

    Article  Google Scholar 

  32. Hall BD, Fox R, Zhang Q, Baumgarten A, Nelson B, Cummings J, Drake B, Phillips D, Hayes K, Beatty M, Zastrow-Hayes G, Zeka B, Hazebroek J, Smith S (2016) Comparison of genotypic and expression data to determine distinctness among inbred lines of maize for granting of plant variety protection. Crop Sci 56(4):1443–1459

    CAS  Article  Google Scholar 

  33. Henderson C (1985) Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. J Anim Sci 60:111–117

    Article  Google Scholar 

  34. Henderson CR (1984) Applications of linear models in animal breeding models. University of Guelph, Guelph

    Google Scholar 

  35. Heuer C (2015) cpgen: parallelized genomic prediction and GWAS. https://cran.r-project.org/package=cpgen

  36. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):1–10. doi:10.1371/journal.pgen.1000008

    Article  Google Scholar 

  37. Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, de los Campos G (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127(3):595–607. doi:10.1007/s00122-013-2243-1

    PubMed  Article  Google Scholar 

  38. Jiang Y, Reif JC (2015) Modelling epistasis in genomic selection. Genetics 201(2):759–768. doi:10.1534/genetics.115.177907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639–666

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kadam D, Potts S, Bohn MO, Lipka AE, Lorenz A (2016) Genomic prediction of hybrid combinations in the early stages of a maize hybrid breeding pipeline. G3(6):3443–3453. doi:10.1101/054015

  41. Kang HM, Sul JH, Service SK, Zaitlen Na, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354. doi:10.1038/ng.548

    PubMed  Article  Google Scholar 

  42. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109. doi:10.1038/nature20827

    CAS  PubMed  Article  Google Scholar 

  43. Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2(2):183–201. doi:10.1093/biostatistics/2.2.183

    CAS  PubMed  Article  Google Scholar 

  44. Larièpe A, Moreau L, Laborde J, Bauland C, Mezmouk S, Décousset L, Mary-Huard T, Fiévet JB, Gallais A, Dubreuil P, Charcosset A (2017) General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theor Appl Genet 130(2):403–417. doi:10.1007/s00122-016-2822-z

    PubMed  Article  Google Scholar 

  45. Lisec J, Römisch-Margl L, Nikoloski Z, Piepho HP, Giavalisco P, Selbig J, Gierl A, Willmitzer L (2011) Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. Plant J 68(2):326–336. doi:10.1111/j.1365-313X.2011.04689.x

    CAS  PubMed  Article  Google Scholar 

  46. Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128(7):1297–1306. doi:10.1007/s00122-015-2505-1

    PubMed  Article  Google Scholar 

  47. Mackay TFC (2014) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15(1):22–33. doi:10.1038/nrg3627

    CAS  PubMed  Article  Google Scholar 

  48. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–77. doi:10.1038/nrg2612

    CAS  PubMed  Article  Google Scholar 

  49. Martini JWR, Wimmer V, Erbe M, Simianer H (2016) Epistasis and covariance: how gene interaction translates into genomic relationship. Theor Appl Genet 129(5):963–976. doi:10.1007/s00122-016-2675-5

    CAS  PubMed  Article  Google Scholar 

  50. Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genomewide predictions from maize single-cross data. Theor Appl Genet 126(1):13–22. doi:10.1007/s00122-012-1955-y

    PubMed  Article  Google Scholar 

  51. Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey K, Staub J (eds) Concepts and breeding of heterosis in crop plants. CSSA, Madison, p 16

    Google Scholar 

  52. Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segre AV, Djebali S, Niarchou A, Consortium TG, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigo R (2015) The human transcriptome across tissues and individuals. Science 348(6235):660–665. doi:10.1126/science.aaa0355

    Article  Google Scholar 

  53. Mrode RA (2014) Linear models for the prediction of animal breeding values, 3rd edn. CABI, Oxfordshire. doi:10.1017/CBO9781107415324.004. arXiv:1011.1669v3

  54. Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–9. doi:10.1038/nrm3314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Pérez P, de Los Campos G (2014) Genome-wide regression & prediction with the BGLR statistical package. Genetics 198(October):483–495. doi:10.1534/genetics.114.164442

    PubMed  PubMed Central  Article  Google Scholar 

  56. R Core Team (2016) R: a language and environment for statistical computing. https://www.r-project.org/

  57. Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176(3):1931–1934. doi:10.1534/genetics.107.074146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44(2):217–20. doi:10.1038/ng.1033

    CAS  PubMed  Article  Google Scholar 

  59. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015a) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97. doi:10.1038/nrg3868

    CAS  PubMed  Article  Google Scholar 

  60. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23(20):2700–2707. doi:10.1093/bioinformatics/btm412

    CAS  PubMed  Article  Google Scholar 

  61. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015b) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. doi:10.1093/nar/gkv007

    PubMed  PubMed Central  Article  Google Scholar 

  62. Robson DS, Powers L, Urquhart NS (1967) The proportion of genetic deviates in the tails of a normal population. Der Züchter 37(4):205–216. doi:10.1007/BF00329530

    Google Scholar 

  63. Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle def. Plant Physiol 167(3):1158–1185. doi:10.1104/pp.114.255927

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Sackton TB, Hartl DL (2016) Perspective genotypic context and epistasis in individuals and populations. Cell 166:279–287. doi:10.1016/j.cell.2016.06.047

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506. doi:10.1038/ng1543

    CAS  PubMed  Article  Google Scholar 

  66. Schnell F (1965) Die Covarianz zwischen Verwandten in einer gen-orthogonalen population. I. Allgemeine Theorie. Biom Z 7(1):2–49

    Article  Google Scholar 

  67. Schopp P, Müller D, Technow F, Melchinger AE (2017) Accuracy of genomic prediction in synthetic populations depending on the number of parents, relatedness and ancestral linkage disequilibrium. Genetics 205:441–454. doi:10.1534/genetics.116.193243

    PubMed  Article  Google Scholar 

  68. Searle BC, Gittelman RM, Manor O, Akey JM (2016) Detecting sources of transcriptional heterogeneity in large-scale RNA-Seq data sets. Genetics 204(December):1391–1396. doi:10.1534/genetics.116.193714

    PubMed  Article  Google Scholar 

  69. Smyth G (2004) Linear models and empirical bayes methods for assessing differential expression in microarrays experiments. Stat Appl Genet Mol Biol 3(1):1–26

    Article  Google Scholar 

  70. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31(4):265–273. doi:10.1016/S1046-2023(03)00155-5

    CAS  PubMed  Article  Google Scholar 

  71. Springer NM, Stupar RM (2007a) Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 19(8):2391–2402. doi:10.1105/tpc.107.052258

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Springer NM, Stupar RM (2007b) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17(3):264–275. doi:10.1101/gr.5347007

    CAS  PubMed  Article  Google Scholar 

  73. Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54(6):1279–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8(33):1–19. doi:10.1186/1471-2229-8-33

    Google Scholar 

  75. Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103(18):6805–6810. doi:10.1073/pnas.0510430103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355. doi:10.1534/genetics.114.165860

    PubMed  PubMed Central  Article  Google Scholar 

  77. Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S (2010) Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor Appl Genet 120(2):401–413. doi:10.1007/s00122-009-1189-9

    CAS  PubMed  Article  Google Scholar 

  78. Thiemann A, Fu J, Seifert F, Grant-Downton RT, Schrag TA, Pospisil H, Frisch M, Melchinger AE, Scholten S (2014) Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. BMC Plant Biol 14(88):1–14. doi:10.1186/1471-2229-14-88

    Google Scholar 

  79. Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, Mori N, Degenhardt J, Mueller LA, Jander G (2015) Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol 169(November):1727–1743. doi:10.1104/pp.15.01039

    CAS  PubMed  PubMed Central  Google Scholar 

  80. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423. doi:10.3168/jds.2007-0980

    CAS  PubMed  Article  Google Scholar 

  81. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom 7:1–15. doi:10.1186/1471-2164-7-142

    Article  Google Scholar 

  82. Vazquez AI, Veturi YC, Behring M, Shrestha S, Kirst M, Resende MFR, de los Campos G (2016) Increased proportion of variance explained and prediction accuracy of survival of breast cancer patients with use of whole-genome multi-omic profiles. Genetics 203(3):1425–1438. doi:10.1534/genetics.115.185181

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Vinuela A, Snoek LB, Riksen JAG, Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20:929–937. doi:10.1101/gr.102160.109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Wedzony M, Forster B, Zur I, Golemiec E, Scechynska-Hebda M, Dubas E, Gotebiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touarev A, Forster BP, Mohan JS (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–33

  85. Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5(2):401–17. doi:10.1093/mp/ssr102

    CAS  PubMed  Article  Google Scholar 

  86. Xu S, Xu Y, Gong L, Zhang Q (2016) Metabolomic prediction of yield in hybrid rice. Plant J 88(2):219–227. doi:10.1111/tpj.13242

    CAS  PubMed  Article  Google Scholar 

  87. Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, Zhao Y, Mobbs CV, Schadt EE, Zhu J, Tu Z (2015) Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Nat Sci Rep 5(15):145. doi:10.1038/srep15145

    Google Scholar 

  88. Zenke-Philippi C, Thiemann A, Seifert F, Schrag TA, Melchinger AE, Scholten S, Frisch M (2016) Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles. BMC Genom 17(1):262. doi:10.1186/s12864-016-2580-y

    Article  Google Scholar 

  89. Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112(51):15,624–15,629. doi:10.1073/pnas.1514547112

  90. Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 10(4):e1001301. doi:10.1371/journal.pbio.1001301

Download references

Acknowledgements

We thank the staff of the Agricultural Experimental Research station, University of Hohenheim, for excellent technical assistance in conducting the field experiments. We are indebted to the group of R. Fries from Technische Universität München for the SNP genotyping of the parent inbred lines, to X. Mi for his assistance in preparing auxiliary figures based on the Mathematica software, to C. Zenke for advice on the computation of transcriptomic BLUEs and to P. Schopp for advice on prediction models.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stefan Scholten or Albrecht E. Melchinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The authors acknowledge support by the state of Baden–Württemberg through bwHPC. This project was funded by the German Federal Ministry of Education and Research (BMBF) within the projects OPTIMAL (FKZ: 0315958B,0315958F), SYNBREED (FKZ: 0315528D) and by the German Research Foundation (DFG, Grants No. ME 2260/5-1 and SCHO 764/6-1). Financial support for M.W. was provided by the Fiat Panis foundation, Ulm, Germany.

M. Westhues and Tobias A. Schrag contributed equally to this work.

Communicated by Matthias Frisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1877 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westhues, M., Schrag, T.A., Heuer, C. et al. Omics-based hybrid prediction in maize. Theor Appl Genet 130, 1927–1939 (2017). https://doi.org/10.1007/s00122-017-2934-0

Download citation