Skip to main content

Advertisement

Log in

QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency.

Abstract

Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BIP:

QTL mapping in biparental populations

ICIM-ADD:

Inclusive composite interval mapping with additive effects

ICIM-EPI:

Inclusive composite interval mapping with epistatic effect

L:

Leucine

LOD:

Logarithm of odds ratio

MET:

QTL by environment interaction in biparental populations

NDVI:

Normalized difference vegetation index

Ĥ 2 :

Heritability

P:

Phosphorus

Pi:

Phosphate

P0:

Additional P fertilizer at 0 kg P/ha

P30:

Additional P fertilizer at 30 kg P/ha

PutEGY :

Phosphorus utilization efficiency: kg grain yield per kg P taken up by grain at harvest

QTL:

Quantitative trait locus

RB:

Root branching

RD:

Root diameter

RS:

Root rhizosheath size

R:S:

Root: Shoot ratio based on dried biomass

SNP:

Single nucleotide polymorphism

V:

Valine

ZGS:

Zadoks growth stage

References

  • Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7:117. doi:10.3389/fgene.2016.00117

    Article  PubMed  PubMed Central  Google Scholar 

  • Arsenault JL, Pouleur S, Messier C, Guay R (1995) WinRhizo, a root measuring system with a unique overlap correction method. Hort Sci 30:906

    Google Scholar 

  • Atta BM, Mahmood T, Trethowan RM (2013) Relationship between root morphology and grain yield of wheat in north-western NSW, Australia. AJCS 7:2108–2115

    Google Scholar 

  • Benedetti R, Rossini P (1993) On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Rem Sens Environ 45:311–326

    Article  Google Scholar 

  • Bian M, Jin XL, Broughton S, Zhang XQ, Zhou GF, Zhou MX, Zhang GP, Sun DF, Li CD (2015) A new allele of acid soil tolerance gene from a malting barley variety. BMC Genet 16:92. doi:10.1186/s12863-015-0254-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudiar R, Casas AM, Cantalapiedra CP, Gracia MP, Igartua E (2016) Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum vulgare) Mediterranean landrace. Crop Pasture Sci 67:37–46. doi:10.1071/Cp15149

    Article  CAS  Google Scholar 

  • Bovill WD, Huang CY, McDonald GK (2013) Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop Pasture Sci 64:179–198. doi:10.1071/Cp13135

    Article  Google Scholar 

  • Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328. doi:10.1093/aob/mcs085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breed 128:46–53. doi:10.1111/j.1439-0523.2008.01510.x

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Delhaize E, James RA, Ryan PR (2012) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol 195:609–619. doi:10.1111/j.1469-8137.2012.04183.x

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Rathjen TM, Cavanagh CR (2015) The genetics of rhizosheath size in a multiparent mapping population of wheat. J Exp Bot 66:4527–4536. doi:10.1093/jxb/erv223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dholaria D (2012) Molecular marker development for phosphorus use efficiency traits. Master’s thesis, The University of Adelaide

  • Eglinton JK, Baum M, Grando S, Ceccarelli S, Barr AR (2001) Towards understanding the genetic basis of adaptation to low rainfall environments. The Regional Institute (online publishing). http://www.regional.org.au/au/abts/2001/t1/eglinton.htm. Accessed on 27 Jan 2017

  • Falk DE (1994) New dominant dwarfing gene (Dwf2) in barley. Barley Genet Newsl 24:87–89

    Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. doi:10.1038/nature11346

    PubMed  Google Scholar 

  • Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC, Wu XX, He ZH (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1–17. doi:10.3389/fpls.2015.01099

    Google Scholar 

  • George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol 203:195–205. doi:10.1111/nph.12786

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Wheeler R, Bovill WD, McDonald GK (2016) QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. Theor Appl Genet 129:1657–1672. doi:10.1007/s00122-016-2729-8

    Article  CAS  PubMed  Google Scholar 

  • Graziani M, Maccaferri M, Royo C, Salvatorelli F, Tuberosa R (2014) QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop Pasture Sci 65:80–95. doi:10.1071/Cp13349

    Google Scholar 

  • Grewal TS, Rossnagel BG, Scoles GJ (2012) Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population. Mol Breed 30:267–279. doi:10.1007/s11032-011-9616-4

    Article  CAS  Google Scholar 

  • Huang CY, Shirley N, Genc Y, Shi BJ, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiol 156:1217–1229. doi:10.1104/pp.111.178459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufnagel B, de Sousa SM, Assis L, Guimaraes CT, Leiser W, Azevedo GC et al (2014) Duplicate and conquer: Multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–677. doi:10.1104/pp.114.243949

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivandic V, Malyshev S, Korzun V, Graner A, Borner A (1999) Comparative mapping of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley. Theor Appl Genet 98:728–731. doi:10.1007/s001220051127

    Article  CAS  Google Scholar 

  • Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304. doi:10.1046/j.1439-0523.2003.00841.x

    Article  CAS  Google Scholar 

  • James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. J Exp Bot 67:3709–3718. doi:10.1093/jxb/erw035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP Mapping of 5 major genes and 8 auantitative trait loci controlling flowering time in a winter × spring barley (Hordeum Vulgare L) cross. Genome 38:575–585

    Article  CAS  PubMed  Google Scholar 

  • Liao M, Hocking PJ, Dong B, Delhaize E, Richardson AE, Ryan PR (2008) Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. Aust J Agr Res 59:157–166. doi:10.1071/Ar06311

    Article  CAS  Google Scholar 

  • Luders T, Ahlemeyer J, Forster J, Weyen J et al (2016) Verification of marker-trait associations in biparental winter barley (Hordeum vulgare L.) DH populations. Mol Breed 36:1–15. doi:10.1007/s11032-016-0438-2

    Article  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel M, Gonzalez RM, Fischer RA, Rajaram S, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274. doi:10.1016/S1161-0301(00)00099-X

    Article  CAS  Google Scholar 

  • Mason SD, McLaughlin MJ, Johnston C, McNeill A (2013) Soil test measures of available P (Colwell, resin and DGT) compared with plant P uptake using isotope dilution. Plant Soil 373:711–722. doi:10.1007/s11104-013-1833-7

    Article  CAS  Google Scholar 

  • McBeath TM, McLaughlin MJ, Kirby JK, Armstrong RD (2012) The effect of soil water status on fertiliser, topsoil and subsoil phosphorus utilisation by wheat. Plant Soil 358:337–348. doi:10.1007/s11104-012-1177-8

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E et al (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • McDonald GK, Taylor JD, Verbyla A, Kuchel H (2012) Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Pasture Sci 63:1043–1065. doi:10.1071/CP12244

    Article  Google Scholar 

  • McDonald G, Bovill W, Taylor J, Wheeler R (2015) Responses to phosphorus among wheat genotypes. Crop Pasture Sci 66:430–444. doi:10.1071/CP14191

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J 3:269–283. doi:10.1016/j.cj.2015.01.001

    Article  Google Scholar 

  • Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Leon J (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet. doi:10.1186/s12863-014-0107-6

    PubMed  PubMed Central  Google Scholar 

  • Obsa BT, Eglinton J, Coventry S, March T, Langridge P, Fleury D (2016) Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). Theor Appl Genet 129:1139–1151. doi:10.1007/s00122-016-2689-z

    Article  PubMed  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2011) An introduction to GenStat for windows, 14th edn. VSN International, Hemel Hempstead

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. doi:10.1007/s00122-010-1351-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172. doi:10.1038/ng.745

    Article  CAS  PubMed  Google Scholar 

  • Raun WR, Solie JB, Johnson GV, Stone ML, Lukina EV, Thomason WE, Schepers JS (2001) In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J 93:131–138. doi:10.2134/agronj2001.931131x

    Article  Google Scholar 

  • Robinson H, Hickey L, Richard C, Mace E, Kelly A, Borrell A, Franckowiak J, Fox G (2016) Genomic regions influencing seminal root traits in barley. Plant Genome 9:1–13. doi:10.3835/plantgenome2015.03.0012

    Article  Google Scholar 

  • Rose TJ, Rose MT, Pariasca-Tanaka J, Heuer S, Wissuwa M (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Sci 2:1–5. doi:10.3389/fpls.2011.00073

    Google Scholar 

  • Ryan PR, James RA, Weligama C, Delhaize E et al (2014) Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol Plantarum 151:230–242. doi:10.1111/ppl.12150

    Article  CAS  Google Scholar 

  • Ryan PR, Liao MT, Delhaize E, Rebetzke GJ, Weligama C, Spielmeyer W, James RA (2015) Early vigour improves phosphate uptake in wheat. J Exp Bot 66:7089–7100. doi:10.1093/jxb/erv403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sembiring H, Raun WR, Johnson GV, Stone ML, Solie JB, Phillips SB (1998) Detection of nitrogen and phosphorus nutrient status in winter wheat using spectral radiance. J Plant Nutr 21:1207–1233. doi:10.1080/01904169809365478

    Article  CAS  Google Scholar 

  • Smith FW, Cybinski D, Rae AE (1999) Regulation of expression of genes encoding phosphate transporters in barley roots. In: Gissel-Nielsen G, Jensen A, eds. Plant nutrition molecular biology and genetics. Proceedings of the Sixth International Symposium on Genetics and Molecular Biology of Plant Nutrition, Elsinore, Denmark. Dordrecht: Kluwer Academic Publishers, pp 145–150

  • Tondelli A, Francia E, Visioni A, Comadran J et al (2014) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica 197:73–86. doi:10.1007/s10681-013-1053-5

    Article  Google Scholar 

  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal Methods 3:2854–2863. doi:10.1039/c1ay05430a

    Article  CAS  Google Scholar 

  • Wiatrak P (2013) Evaluation of phosphorus application with avail on growth and yield of winter wheat in southeastern coastal plains. Am J Agric Biol Sci 8:222–229. doi:10.3844/ajabssp.2013.222.229

    Article  CAS  Google Scholar 

  • Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indexes in crop assessments. Remote Sens Environ 35:105–119. doi:10.1016/0034-4257(91)90004-P

    Article  Google Scholar 

  • Xiao YG, Li SM, Li FJ, Zhang HY, Chen XM, Wang DS, Xia XC, He ZH (2015) Genetic analysis of yield and physiological traits in elite parent Jing 411 and its derivatives under two fertilization environments. Acta Agronomica Sinica 41:1333–1342

    Article  CAS  Google Scholar 

  • Yuan Y, Gao M, Zhang M, Zheng H, Zhou X, Guo Y, Zhao Y, Kong F, Li S (2017) QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat. Front Plant Sci 8:1–13. doi:10.3389/fpls.2017.00614

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang HW, Xu RN, Xie CX, Huang CL, Liao H, Xu YB, Wang JX, Li WX (2015) Large-scale evaluation of maize germplasm for low-phosphorus tolerance. PLoS ONE 10:e0124212. doi:10.1371/journal.pone.0124212

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Grains Research and Development Corporation, Australia (UA00115) supported this work. The authors sincerely thank Professor Jason Eglinton and Mr. Stewart Coventry for providing the Commander x Fleet population. The technical support from Mr. Willie Shoobridge and Mr. Andrew Ware is gratefully acknowledged. We are grateful to Dr. Julian Taylor’s assistance with the design of the field experiments and analysis of some of the data. We sincerely thank the editor and anonymous reviewers for their constructive comments, which shaped our work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments comply with the current laws of Australia in which they were performed.

Additional information

Communicated by Gary Muehlbauer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., McDonald, G. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theor Appl Genet 130, 1885–1902 (2017). https://doi.org/10.1007/s00122-017-2931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2931-3

Navigation