Skip to main content
Log in

qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A quantitative trait locus  qRfg3 imparts recessive resistance to maize Gibberella stalk rot. qRfg3 has been mapped into a 350-kb interval and could reduce the disease severity index by ~26.6%.

Abstract

Gibberella stalk rot, caused by the fungal pathogen Fusarium graminearum, severely affects maize yield and grain quality worldwide. To identify more resistance quantitative trait loci (QTLs) against this disease, we analyzed a recombinant inbred line (RIL) population derived from a cross between resistant H127R and susceptible C7-2 inbred lines. Within this population, maize resistance to Gibberella stalk rot had high broad-sense heritability. A major QTL, qRfg3, on chromosome 3 was consistently detected across three field trials, accounting for 10.7–19.4% of the total phenotypic variation. Using a progeny-based sequential fine-mapping strategy, we narrowed qRfg3 down to an interval of ~350 kb. We further demonstrated that qRfg3 is a recessive resistance locus to Gibberella stalk rot that reduced the disease severity index by ~26.6%. Both the gene location and recessive genetic mode distinguish qRfg3 from other stalk rot resistance loci. Hence, qRfg3 is valuable as a complement to existing resistance QTLs to improve maize resistance to Gibberella stalk rot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad L, Wolters P, Stucker D, Davis P (2006) Advances in anthracnose stalk rot resistance. In: The fifth national IPM symposium “Delivering on a Promise.”

  • Andersen JR, Asp T, Lu Y, Kloiber-Maitz M, Ouzonova M, Luebberstedt T (2009) Development and mapping of gene-tagged SNP markers in laccases of maize (Zea mays L.). Plant Breed. doi:10.1111/j.1439-0523.2008.01580.x

    Google Scholar 

  • Asea G, Vivek BS, Bigirwa G, Lipps PE, Pratt RC (2009) Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Phytopathology 99:540–547

    Article  CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1997) QTL cartographer: a reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Boddu J, Cho S, Kruger MK, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    Article  CAS  PubMed  Google Scholar 

  • Butzen S (2012) Best Management practices for corn-after-corn production. Crop Insights 22:1–5

    Google Scholar 

  • Carson ML, Hooker AL (1981) Inheritance of resistance to stalk rot of corn caused by Colletotrichum gratninicola. Phytopathology 71:1190–1196

    Article  Google Scholar 

  • Clair DAS (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol. doi:10.1146/annurev-phyto-080508-081904

    Google Scholar 

  • Clear RM, Patrick SK, Platford RG, Desjardins M (1996) Occurrence and distribution of Fusarium species in barley and oat seed from Manitoba in 1993 and 1994. Can J Plant Path 18:409–414

    Article  Google Scholar 

  • De La Vega FM, Lazaruk KD, Rhodes MD, Wenz MH (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat Res 573:111–135

    Article  PubMed  Google Scholar 

  • De Leon C, Jeffers D (2004) Maize diseases: a guide for field identification. CIMMYT, Mexico

    Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • French E, Kim BS, Iyer-Pascuzzi AS (2016) Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol 56:201–208

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Hu HX, Meng YJ, Wang HW, Liu H, Chen S (2012) Identifying quantitative trait loci and determining closely related stalk traits for rind penetrometer resistance in a high-oil maize population. Theor Appl Genet. doi:10.1007/s00122-012-1799-5

    Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1.pdf. PNAS 112:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet. doi:10.1007/BF00225375

    Google Scholar 

  • Kaapp SJ, Stroup WW, ROSS WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. doi:10.2135/cropsci1985.0011183X002500010046x

    Google Scholar 

  • Kappelman JA, Thompson DL (1966) Inheritance of resistance to Diplodia stalk-rot in corn. Crop Sci 6:288–290

    Article  Google Scholar 

  • Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60

    Article  CAS  PubMed  Google Scholar 

  • Kou Y, Wang SP (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Ku LX et al (2016) Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions. BMC Plant Biol. doi:10.1186/s12870-016-0930-1

    Google Scholar 

  • Lal S, Singh LS (1984) Breeding for resistance to downy mildews and stalk rots in maize. Theor Appl Genet. doi:10.1007/BF00272879

    PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Yan JB, Li JS, Yang XH (2014) Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol. doi:10.1186/1471-2229-14-152

    Google Scholar 

  • Lim SM, White DG (1978) Estimates of heterosis and combining ability for resistance of maize to Colletotrichum graminicola. Phytopathology 68:1336–1342

    Article  Google Scholar 

  • Liu QQ, Liu HH, Gong YQ, Tao YF, Jiang L, Zuo WL, Yang Q, Ye JR, Lai JS, Wu JY, Lübberstedt T, Xu ML (2017) An atypical thioredoxin imparts early resistance to Sugarcane Mosaic Virus in Maize. Mol Plant 10:483–497

    Article  CAS  PubMed  Google Scholar 

  • Long SS, Li YL, Zhang YH, Ma BY (2003) Relationships between sugar content in corn stalk and resistance to corn stalk rot caused by Fusarium. J Plant Prot 30(1):111–112

    Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • Mirocha CJ, Schauerhamer B, Christensen CM, Kommedahl T (1979) Zearalenone, deoxynivalenol, and T-2 toxin associated with stalk rot in corn. Appl Environ Microbiol 38:557–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller D (2012) Corn disease loss estimates from the United States and Ontario, Canada—2012. Disease of Corn. Purdue Extension publication BP-96-12—W

  • Mueller D (2013) Corn disease loss estimates From the United States and Ontario, Canada—2013. Disease of Corn. Purdue Extension publication BP-96-13–W

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ogliari JB, Guimarães MA, Camargo LEA (2007) Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genetics and Molecular Biology 30:630–634

    Article  CAS  Google Scholar 

  • Ooijen JWV (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Ou SH (1985) Rice diseases. IRRI, Los Baños

    Google Scholar 

  • Pè ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G (1993) Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol General Genet MGG 241:11–16

    Google Scholar 

  • Pernet A et al (1999) Genetic mapping of maize streak virus resistance from the Mascarene source. II. Resistance in line CIRAD390 and stability across germplasm. Theor Appl Genet. doi:10.1007/s001220051267

    Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Pozar G, Butruille D, Silva HD, McCuddin ZP, Penna JC (2009) Mapping and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.). Theor Appl Genet. doi:10.1007/s00122-008-0920-2

    PubMed  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Molnár TL, Holland JB (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46:1734–1743

    Article  CAS  Google Scholar 

  • Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15:427–432

    Article  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2013) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  Google Scholar 

  • Song FJ, Xiao MG, Duan CX, Li HJ, Zhu ZD, Liu BT, Sun SL, Wu XF, Wang XM (2015) Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319. Mol Genet Genom. doi:10.1007/s00438-015-1019-5

    Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Wiese MV (1985) Compendium of wheat diseases. APS Press, St Paul

    Google Scholar 

  • Xiang K, Zhang ZM, Reid LM, Yuan GS, Pan GT (2010) A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 55:281

    Google Scholar 

  • Xu L, Zhang Y, Shao SQ, Chen W, Tan J, Zhu M, Zhong T, Fan XM, Xu ML (2014) High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biol 14:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DE, Zhang CL, Zhang DS, Jin DM, Weng ML, Chen SJ, Nguyen H, Wang B (2004) Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theor Appl Genet. doi:10.1007/s00122-003-1466-y

    Google Scholar 

  • Yang DE, Jin DM, Wang B, Zhang DS, Nguyen HT, Zhang CL, Chen SJ (2005) Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize. Mol Genet Genom. doi:10.1007/s00438-005-0016-5

    Google Scholar 

  • Yang Q, Yin GM, Guo YL, Zhang DF, Chen SJ, Xu ML (2010) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet. doi:10.1007/s00122-010-1339-0

    Google Scholar 

  • Yang Q, Zhang DF, Xu ML (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol. doi:10.1111/j.1744-7909.2012.01108.x

    Google Scholar 

  • Ye JR, Guo YL, Zhang DF, Zhang N, Wang C, Xu ML (2013) Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to gibberella stalk rot in maize. Mol Plant Microbe Interact 26:1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DF, Liu YJ, Guo YL, Yang Q, Ye JR, Chen SJ, Xu ML (2012a) Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet. doi:10.1007/s00122-011-1731-4

    Google Scholar 

  • Zhang Y, Xu L, Fan XM, Tan J, Chen W, Xu ML (2012b) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet. doi:10.1007/s00122-012-1954-z

    Google Scholar 

  • Zuo WL, Chao Q, Zhang N, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler KA, Zhao J, Zhao XR, Chen YS, Lai JS, Yan JB, Xu ML (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nature genetics 47(2):151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Jiansheng Li (China Agricultural University, Beijing) for provision of the RIL population and genotypic information. This work was financially supported by the National Key Research and Development Program of China (grant numbers: 2016YFD0101803 and 2016YFD0101002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We claim that the experiments described herein comply with the ethical standards in China.

Additional information

Communicated by Laurence Moreau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Ma, X., Yao, L. et al. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Theor Appl Genet 130, 1723–1734 (2017). https://doi.org/10.1007/s00122-017-2921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2921-5

Navigation