Skip to main content
Log in

Mapping of SnTox3–Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The effect of the SnTox3–Snn3 interaction was documented for the first time under natural infection at the adult plant stage in the field. Co-segregating SNP markers were identified.

Abstract

Parastagonospora nodorum is a necrotrophic pathogen of wheat, causing Septoria nodorum blotch (SNB) affecting both the leaf and glume. P. nodorum is the major leaf blotch pathogen on spring wheat in Norway. Resistance to the disease is quantitative, but several host-specific interactions between necrotrophic effectors (NEs) and host sensitivity (Snn) genes have been identified, playing a major role at the seedling stage. However, the effect of these interactions in the field under natural infection has not been investigated. In the present study, we saturated the genetic map of the recombinant inbred (RI) population SHA3/CBRD × Naxos using the Illumina 90 K SNP chip. The population had previously been evaluated for segregation of SNB susceptibility in field trials. Here, we infiltrated the population with the purified NEs SnToxA, SnTox1 and SnTox3, and mapped the Snn3 locus on 5BS based on sensitivity segregation and SNP marker data. We also conducted inoculation and culture filtrate (CF) infiltration experiments on the population with four selected P. nodorum isolates from Norway and North America. Remapping of quantitative trait loci (QTL) for field resistance showed that the SnTox3–Snn3 interaction could explain 24% of the phenotypic variation in the field, and more than 51% of the variation in seedling inoculations. To our knowledge, this is the first time the effect of this interaction has been documented at the adult plant stage under natural infection in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeysekara N, Friesen T, Keller B, Faris J (2009) Identification and characterization of a novel host–toxin interaction in the wheat–Stagonospora nodorum pathosystem. Theoret Appl Genetics 120:117–126

    Article  CAS  Google Scholar 

  • Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theoret Appl Genetics 111:325–336

    Article  CAS  Google Scholar 

  • Bhathal J, Loughman R, Speijers J (2003) Yield reduction in wheat in relation to leaf disease from yellow (Tan) spot and septoria nodorum blotch. Eur J Plant Pathol 109:435–443

    Article  CAS  Google Scholar 

  • Cockram J, Scuderi A, Barber T, Furuki E, Gardner KA, Gosman N, Kowalczyk R, Phan HP, Rose GA, Tan K-C, Oliver RP, Mackay IJ (2015) Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population. G3: Genes|Genomes|Genetics 5:2257–2266

  • Cowger C, Murphy JP (2007) Artificial inoculation of wheat for selecting resistance to Stagonospora nodorum Blotch. Plant Dis 91:539–545

    Article  Google Scholar 

  • Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C (2012) Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Phytopathology 102:498–505

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci 107:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Zhang Z, Rasmussen JB, Friesen TL (2011) Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Mol Plant-Microbe Interact MPMI 24:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Francki MG (2013) Improving Stagonospora nodorum resistance in wheat: a review. Crop Sci 53:355–365

    Article  Google Scholar 

  • Francki MG, Shankar M, Walker E, Loughman R, Golzar H, Ohm H (2011) New quantitative trait loci in wheat for Flag leaf resistance to Stagonospora nodorum Blotch. Phytopathology 101:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Fraser DE, Murphy JP, Leath S, Van Sanford DA (2003) Effect of inoculation with selected isolates of Stagonospora nodorum on field evaluations of host resistance in winter wheat. Plant Dis 87:1213–1220

    Article  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum disease system: what is the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol-Rev Can Phytopathol 32:20–28

    Article  CAS  Google Scholar 

  • Friesen T, Faris J (2012) Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. In: Bolton MD, Thomma BPHJ (eds) Plant fungal pathogens. Humana Press, pp 191–207

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J Cell Mol Biol 51:681–692

    Article  CAS  Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008a) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD (2008b) Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol 146:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen T, Chu CG, Liu ZH, Xu SS, Halley S, Faris JD (2009) Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theoret Appl Genetics 118:1489–1497

    Article  CAS  Google Scholar 

  • Gao Y, Faris JD, Liu Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL (2015) Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Mol Plant Microbe Interact MPMI 28:615–625

    Article  CAS  PubMed  Google Scholar 

  • Kassa MT, Menzies JG, McCartney CA (2015) Mapping of a resistance gene to loose smut (Ustilago tritici) from the Canadian wheat breeding line BW278. Mol Breeding 35:1–8

    Article  CAS  Google Scholar 

  • Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM (2016) Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580

    Article  PubMed  Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB, Friesen TL (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5:e1000581

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, Xu S, Friesen TL (2012) The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 8:e1002467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Lillemo M (2014) Molecular mapping of adult plant resistance to Parastagonospora nodorum leaf blotch in bread wheat lines ‘Shanghai-3/Catbird’ and ‘Naxos’. Theoret Appl Genetics 127:2635–2644

    Article  Google Scholar 

  • Lu Q, Bjornstad A, Ren Y, Asad MA, Xia X, Chen X, Ji F, Shi J, Lillemo M (2012) Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments. Theor Appl Genet 125:297–309

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer KFX, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, Endo TR, Kubaláková M, Číhalíková J, Dubská Z, Vrána J, Šperková R, Šimková H, Febrer M, Clissold L, McLay K, Singh K, Chhuneja P, Singh NK, Khurana J, Akhunov E, Choulet F, Alberti A, Barbe V, Wincker P, Kanamori H, Kobayashi F, Itoh T, Matsumoto T, Sakai H, Tanaka T, Wu J, Ogihara Y, Handa H, Maclachlan PR, Sharpe A, Klassen D, Edwards D, Batley J, Olsen O-A, Sandve SR, Lien S, Steuernagel B, Wulff B, Caccamo M, Ayling S, Ramirez-Gonzalez RH, Clavijo BJ, Wright J, Pfeifer M, Spannagl M, Martis MM, Mascher M, Chapman J, Poland JA, Scholz U, Barry K, Waugh R, Rokhsar DS, Muehlbauer GJ, Stein N, Gundlach H, Zytnicki M, Jamilloux V, Quesneville H, Wicker T, Faccioli P, Colaiacovo M, Stanca AM, Budak H, Cattivelli L, Glover N, Pingault L, Paux E, Sharma S, Appels R, Bellgard M, Chapman B, Nussbaumer T, Bader KC, Rimbert H, Wang S, Knox R, Kilian A, Alaux M, Alfama F, Couderc L, Guilhot N, Viseux C, Loaec M, Keller B, Praud S (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA (2013) Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species. New Phytol 199:241–251

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342

    Article  PubMed  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419

    Article  CAS  PubMed  Google Scholar 

  • Phan HT, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP, Tan KC (2016) Differential effector gene expression underpins epistasis in a plant fungal disease. Plant J 87:343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaedvlieg W, Verkley GJ, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Studies in mycology 75:307–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in Wheat. Phytopathology 98:886–893

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD (2015) The wheat gene confers susceptibility on recognition of the necrotrophic effector SnTox7. Plant Genome 8:1–10

    Article  CAS  Google Scholar 

  • Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD (2016a) Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genetics Genom MGG 291:107–119

    Article  CAS  Google Scholar 

  • Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W, Frenkel Z, Xu SS, Rasmussen JB, Faris JD (2016b) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2:e1600822

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon PS, Lowe RGT, Tan K-C, Waters ODC, Oliver RP (2006) Stagonospora nodorum: cause of Stagonospora nodorum blotch of wheat. Mol Plant Pathol 7:147–156

    Article  PubMed  Google Scholar 

  • Tan KC, Ferguson-Hunt M, Rybak K, Waters OD, Stanley WA, Bond CS, Stukenbrock EH, Friesen TL, Faris JD, McDonald BA, Oliver RP (2012) Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Mol Plant Microbe Interact MPMI 25:515–522

    Article  CAS  PubMed  Google Scholar 

  • Tan K-C, Waters ODC, Rybak K, Antoni E, Furuki E, Oliver RP (2014) Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors. Crop Pasture Sci 65:150–158

    Article  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations Kyazma BV. Wageningen, Netherlands

    Google Scholar 

  • van Ooijen J (2011) MapQTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, The Netherlands

    Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing C, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters OD, Lichtenzveig J, Rybak K, Friesen TL, Oliver RP (2011) Prevalence and importance of sensitivity to the Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars. Crop and Pasture. Science 62:556–562

    Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was funded by the Norwegian Research Council (NFR) project 224833. The authors want to acknowledge Dr. Qiongxian Lu for recording and initial analysis of the phenotypic data from the field trials, Dr. Andrea Ficke for providing the NOR4 isolate and advice on isolation and cultivation of P. nodorum isolates, and Dr. Richard Oliver for providing purified necrotrophic effectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Lillemo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susanne Dreisigacker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 2797 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruud, A.K., Windju, S., Belova, T. et al. Mapping of SnTox3–Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Theor Appl Genet 130, 1361–1374 (2017). https://doi.org/10.1007/s00122-017-2893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2893-5

Keywords

Navigation