Skip to main content

Characterization and genetic mapping of the β-diketone deficient eceriferum-b barley mutant

Abstract

Key message

The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient in the cuticular wax component 14,16-hentriacontanedione. The mutated gene maps to a 1.3-cM interval on chromosome 3HL flanked by the genes MLOC_10972 and MLOC_69561.

Abstract

The cuticular wax coating of leaves and stems in many grass species is responsible for the plants’ glaucous appearance. A major component of the wax is a group of β-diketone compounds. The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient for the compound 14,16-hentriacontanedione. A linkage analysis based on 708 gametes allowed the gene responsible for the mutant phenotype to be mapped to a 1.3-cM interval on chromosome 3HL flanked by the two genes MLOC_10972 and _69561. The product of the wild type allele may represent a step in the β-diketone synthesis pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C (2013) The Inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74:989–1002

    CAS  Article  PubMed  Google Scholar 

  2. Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    CAS  Article  PubMed  Google Scholar 

  3. Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67:5363–5380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bianchi G, Figini ML (1986) Epicuticular waxes of glaucous and nonglaucous durum Wheat lines. J Agric Food Chem 34:429–433

    CAS  Article  Google Scholar 

  5. Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Pro Natl Acad Sci USA 101:4706–4711

    CAS  Article  Google Scholar 

  6. Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654

    Article  PubMed  PubMed Central  Google Scholar 

  7. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    CAS  Article  PubMed  Google Scholar 

  8. Eslick RF, McProud WL (1974) Positioning of genetic male sterile 5 (msg5) on chromosome 3. BGN 4:16–23

    Google Scholar 

  9. Franckowiak JD, Lundqvist U (2011) Descriptions of barley genetic stocks for 2011. Barley Genet Newsl 41:141–142

    Google Scholar 

  10. Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamki N, Malitsky S, Almekias-Siegl E, Levy M, Vautrin S, Bergès H, Friedlander G, Kartvelishvily E, Ben-Zvi G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A (2016) A metabolic gene cluster in the Wheat W1 and the Barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28:1440–1460

    CAS  Article  PubMed  Google Scholar 

  11. Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. Arabidopsis Book/Am Soc Plant Biol 1:e0016

    Google Scholar 

  12. Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Komatsuda T, Nakamura I, Takaiwa F, Oka S (1998) Development of STS markers closely linked to the vrs1 locus in barley, Hordeum vulgare. Genome 41:680–685

    CAS  Article  Google Scholar 

  14. Konishi T (1970) Genetic analyses of two kinds of EMS-induced mutants of barley. Barley Newsl 13:57–58

    Google Scholar 

  15. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  16. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 12:721–727

    Google Scholar 

  17. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    CAS  Article  PubMed  Google Scholar 

  18. Kyazma (2006) https://www.kyazma.nl/index.php/mc.JoinMap/. Accessed 10 May 2016

  19. Lee SB, Kim HU, Suh MC (2016) MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol 57:2300–2311

    CAS  Article  PubMed  Google Scholar 

  20. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. Arabidopsis Book/Am Soc Plant Biol 8:e0133

    Google Scholar 

  21. Lundqvist U, Lundqvist A (1988) Mutagen specificity in barley for 1580 eceriferurn mutants localized to 79 loci. Hereditas 108:1–12

    CAS  Article  Google Scholar 

  22. Lundqvist U, Wettstein D (2009) Induction of Eceriferum mutants in barley by ionizing radiations and chemical mutagens. Hereditas 48:342–362

    Article  Google Scholar 

  23. Mayer KF, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Mikkelsen J (1979) Structure and biosynthesis of β-diketones in barley spike epicuticular wax. Carlsberg Res Commun 44: 133–147

    CAS  Article  Google Scholar 

  25. Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Rasmusson DC, Lambert JW (1965) Inheritance of the glossy-sheath character in barley, Hordeum vulgare L. Crop Sci 5:251–253

    Article  Google Scholar 

  27. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    CAS  Article  PubMed  Google Scholar 

  28. Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, von Wettstein-Knowles P (2016) The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot 67:2715–2730

    CAS  Article  PubMed Central  Google Scholar 

  29. Schondelmaier J, Fischbeck G, Jahoor A (1993) Linkage studies between morphological and RFLP markers in the barley genome. BGN 22:57–62

    Google Scholar 

  30. Singh RJ, Tsuchiya T (1974) Further information on telotrisomic analysis in barley. BGN 44:66–69

    Google Scholar 

  31. Tsuchiya T (1972) Cytogenetics of telotrisomics in barley. BGN 2:93–98

    Google Scholar 

  32. Tsunewaki K, Ebana K (1999) Production of near-isogenic lines of common wheat for glaucousness and genetic basis of this trait. Genes Genet Syst 74:33–41

    Article  Google Scholar 

  33. Varshney RK, Balyan HS, Langridge P (2006) Wheat. In:Kole C (ed) Cereals and millets. Springer, Berlin, pp 79–134

    Chapter  Google Scholar 

  34. von Wettstein-Knowles P (1972) Genetic control of β-diketone and hydroxy-β-diketone synthesis in epicuticular waxes of barley. Planta 106:113–130

    Article  Google Scholar 

  35. von Wettstein-Knowles P (1980) The cer-cqu region in barley: gene cluster or multifunctional gene. Carlsberg Res Commun 45:125–141

    Article  Google Scholar 

  36. von Wettstein-Knowles P (1986) The role of cer-cqu in epicuticular wax biosynthesis. Biochem Soc Trans 14:576–579

    Article  Google Scholar 

  37. von Wettstein-Knowles P (1992) Molecular genetics of lipid synthesis in barley. In: Munck L (ed) Barley genetics, VI, pp 753–771

  38. von Wettstein-Knowles P (2012) Plant waxes. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0001919.pub2

    Google Scholar 

  39. Voorrips RE (2002) MapChart software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  Article  PubMed  Google Scholar 

  40. Wang Y, Wang ML, Sun YL, Hegebarth D, Li TT, Jetter R, Wang ZH (2015) Molecular characterization of TaFAR1 involved in primary alcohol biosynthesis of cuticular wax in hexaploid wheat. Plant Cell Physiol 56:1944–1961

    CAS  Article  PubMed  Google Scholar 

  41. Xu XJ, Charles R, Dietrich (1997) Sequence analysis of the cloned glossy 8 gene of Maize suggests that it may code for a β-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (41621001 and 31170369), by the Key Project of the Chinese National Programs for Fundamental Research and Development (973 Program, 2013CB429904 awarded to G.C.), by the Japanese Ministry of Agriculture, Forestry and Fisheries “Genomics for Agricultural Innovation” program (TRS1002 to T.K.), and by Gansu Innovation Research Group Fund (Y339N91001 to G.C.). We acknowledge IBSC, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany; (2016): Pseudomolecules of the map-based reference genome assembly of barley cv. Morex.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoxiong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alan H. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Li, C., Mishina, K. et al. Characterization and genetic mapping of the β-diketone deficient eceriferum-b barley mutant. Theor Appl Genet 130, 1169–1178 (2017). https://doi.org/10.1007/s00122-017-2877-5

Download citation

Keywords

  • Leaf Sheath
  • Wild Barley Accession
  • Flag Leaf Sheath
  • International Barley Genome Sequencing Consortium
  • Cuticle Membrane