Theoretical and Applied Genetics

, Volume 130, Issue 5, pp 861–873 | Cite as

Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize

  • Juliane Böhm
  • Wolfgang Schipprack
  • H. Friedrich Utz
  • Albrecht E. Melchinger
Original Article

Abstract

Key message

Using landraces for broadening the genetic base of elite maize germplasm is hampered by heterogeneity and high genetic load. Production of DH line libraries can help to overcome these problems.

Abstract

Landraces of maize (Zea mays L.) represent a huge reservoir of genetic diversity largely untapped by breeders. Genetic heterogeneity and a high genetic load hamper their use in hybrid breeding. Production of doubled haploid line libraries (DHL) by the in vivo haploid induction method promises to overcome these problems. To test this hypothesis, we compared the line per se performance of 389 doubled haploid (DH) lines across six DHL produced from European flint landraces with that of four flint founder lines (FFL) and 53 elite flint lines (EFL) for 16 agronomic traits evaluated in four locations. The genotypic variance (\(\sigma _{G}^{2}\)) within DHL was generally much larger than that among DHL and exceeded also \(\sigma _{G}^{2}\) of the EFL. For most traits, the means and \(\sigma _{G}^{2}\) differed considerably among the DHL, resulting in different expected selection gains. Mean grain yield of the EFL was 25 and 62% higher than for the FFL and DHL, respectively, indicating considerable breeding progress in the EFL and a remnant genetic load in the DHL. Usefulness of the best 20% lines was for individual DHL comparable to the EFL and grain yield (GY) in the top lines from both groups was similar. Our results corroborate the tremendous potential of landraces for broadening the narrow genetic base of elite germplasm. To make best use of these “gold reserves”, we propose a multi-stage selection approach with optimal allocation of resources to (1) choose the most promising landraces for DHL production and (2) identify the top DH lines for further breeding.

Supplementary material

122_2017_2856_MOESM1_ESM.docx (367 kb)
Supplementary material 1 (DOCX 367 KB)

References

  1. Barrière Y, Alber D, Dolstra O et al (2006) Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes. Maydica 51:435–449Google Scholar
  2. Boglioli E, Richard M (2015) Rewriting the book of life: a new era in precision gene editing. Boston Consulting Group (BCG)Google Scholar
  3. Böhm J, Schipprack W, Mirdita V et al (2014) Breeding potential of European flint maize landraces evaluated by their testcross performance. Crop Sci 54:1665–1672CrossRefGoogle Scholar
  4. Burr IW, Foster LA (1972) A test for equality of variances. Mimeograph Series No. 282. University of Purdue, West LafayetteGoogle Scholar
  5. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments. ASReml-R reference manual: Release 3.0. Technical report. ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). https://www.vsni.co.uk/software/asreml
  6. Chaikam V, Nair SK, Babu R et al (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171CrossRefPubMedGoogle Scholar
  7. Chalyk ST, Rotarenco VA (1999) Using maternal haploid plants in recurrent selection in maize. Maize Genet Newsl 73:56–57Google Scholar
  8. Chase S. (1951) Efficient methods of developing and improving inbred lines. The monoploid method of developing inbred lines. In: Report of the 6th Hybrid Corn Industry Research Conference, Chicago, IL. 28–29 Nov. pp 29–34Google Scholar
  9. CIMMYT (2012) Seeds of Discovery, Unlocking the genetic potential of maize and wheat. http://seedsofdiscovery.org/. Accessed 18 Aug 2016
  10. Cochran WG, Cox GM (1957) Experimental designs, 2nd edn. Wiley, LondonGoogle Scholar
  11. Dallard J, Noël P, Gouesnard B, Boyat A (2000) A network for the management of genetic resources of maize populations in France. In: IPGRI; FAO (ed) Plant Genetic Resources Newsletter, No. 123. pp 35–40Google Scholar
  12. Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587. doi:10.1007/s001220050776 CrossRefGoogle Scholar
  13. Dubreuil P, Charcosset A (1999) Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers. Theor Appl Genet 99:473–480. doi:10.1007/s001220051259 CrossRefPubMedGoogle Scholar
  14. Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews. Part 2: long-term selection: crops, animals, and bacteria, vol 24. Wiley, New York, pp 109–151Google Scholar
  15. EUMLDB (2000) European Maize Landrace Database. In: EU GenRes 088. http://www.ensam.inra.fr/gap/resgen88/. Accessed 10 Feb 2016
  16. Falconer D, Mackay T (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, LondonGoogle Scholar
  17. Frisch M, Melchinger AE (2001) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41:1716–1725CrossRefGoogle Scholar
  18. Geiger HH, Andrés Gordillo G, Koch S (2013) Genetic correlations among haploids, doubled haploids, and testcrosses in maize. Crop Sci 53:2313CrossRefGoogle Scholar
  19. Gouesnard B, Dallard J, Panouille A, Boyat A (1997) Classification of French maize populations based on morphological traits. Agronomie 17:491–498CrossRefGoogle Scholar
  20. Hallauer A, Carena M, Miranda Filho J (2010) Quantitative genetics in maize breeding, 3rd edn. Springer New York, Iowa State Univ. Press, AmesGoogle Scholar
  21. Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: What can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943CrossRefPubMedPubMedCentralGoogle Scholar
  22. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  23. Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48:109–111CrossRefPubMedGoogle Scholar
  24. Lauer S, Hall BD, Mulaosmanovic E et al (2012) Morphological changes in parental lines of Pioneer brand maize hybrids in the U.S. central Corn Belt. Crop Sci 52:1033–1043CrossRefGoogle Scholar
  25. Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636CrossRefPubMedGoogle Scholar
  26. Lucchin M, Barcaccia G, Parrini P (2003) Characterization of a flint maize (Zea mays L. convar. mays) Italian landrace: I. Morpho-phenological and agronomic traits. Genet Resour Crop Evol 50:315–327CrossRefGoogle Scholar
  27. Malvar RA, Butrón A, Álvarez A et al (2007) Yield performance of the European Union maize landrace core collection under multiple corn borer infestations. Crop Prot 26:775–781CrossRefGoogle Scholar
  28. Melchinger AE, Longin CF, Utz HF, Reif JC (2005) Hybrid maize breeding with doubled haploid lines: quantitative genetic and selection theory for optimum allocation of resources. In: Proc. of the 41st Annual Illinois Corn Breeders School 2005 Urbana-Champaign, IL. 7–8 Mar. 2005. Univ. of Illinois at Urbana-Champaign. pp 8–21Google Scholar
  29. Melchinger AE, Schipprack W, Würschum T et al (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3:2129. doi:10.1038/srep02129 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Melchinger AE, Schipprack W, Friedrich Utz H, Mirdita V (2014) In vivo haploid induction in maize: Identification of haploid seeds by their oil content. Crop Sci 54:1497CrossRefGoogle Scholar
  31. Messmer MM, Melchinger AE, Boppenmaier J et al (1992) Relationships among early European maize inbreds: I. Genetic diversity among flint and dent lines revealed by RFLPs. Crop Sci 32:1301–1309CrossRefGoogle Scholar
  32. Messmer MM, Melchinger AE, Herrmann RG, Boppenmaier J (1993) Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci 33:944CrossRefGoogle Scholar
  33. Montes J, Utz HF, Schipprack W et al (2006) Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters. Plant Breed 125:591–595CrossRefGoogle Scholar
  34. Onda Y, Mochida K (2016) Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genom 17:356–365CrossRefGoogle Scholar
  35. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92CrossRefGoogle Scholar
  36. Peter R, Eschholz TW, Stamp P, Liedgens M (2009) Early growth of flint maize landraces under cool conditions. Crop Sci 49:169–178CrossRefGoogle Scholar
  37. Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, 3rd edn. Springer Protocols, Totowa, NJ, pp 161–172Google Scholar
  38. Prigge V, Babu R, Das B et al (2012) Doubled haploids in tropical maize: II. Quantitative genetic parameters for testcross performance. Euphytica 185:453–463CrossRefGoogle Scholar
  39. R development core team (2013) R: A language and environment for statistical computing. http://www.R-project.org/
  40. Rebourg C, Chastanet M, Gouesnard B et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903CrossRefPubMedGoogle Scholar
  41. Reif JC, Xia XC, Melchinger AE et al (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334CrossRefGoogle Scholar
  42. Reif JC, Hamrit S, Heckenberger M et al (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913. doi:10.1007/s00122-005-0016-1 CrossRefPubMedGoogle Scholar
  43. Romay MC, Malvar RA, Campo L et al (2010) Climatic and genotypic effects for grain yield in maize under stress conditions. Crop Sci 50:51–58CrossRefGoogle Scholar
  44. Rotarenco V (2012) Selection and breeding experiments at the haploid level in maize (Zea mays L.). J Plant Breed Crop Sci 4:72–79Google Scholar
  45. Scheffé H (1959) The analysis of variance. Wiley, New YorkGoogle Scholar
  46. Schnell FW (1983) Probleme der Elternwahl - Ein Überblick. In: Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein, Austria. 22.-24. Nov. Verlag und Druck der Bundesanstalt für alpenländische Landwirtschaft, Austria, pp 1–11Google Scholar
  47. Schnell FW (1992) Maiszüchtung und die Züchtungsforschung in der Bundesrepublik Deutschland. In: Vorträge Pflanzenzüchtung. pp 27–44Google Scholar
  48. Sood S, Flint-Garcia S, C. Willcox M, Holland JB (2014) Genomics of plant genetic resources: Mining natural variation for maize improvement: Selection on phenotypes and genes. In: Tuberosa R et al. (ed) Genomics of plant genetic resources. Springer Science + Business Media, Dordrecht 2014, pp 467–487Google Scholar
  49. Stich B, Melchinger AE, Frisch M et al (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730CrossRefPubMedGoogle Scholar
  50. Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PloS One 8(2):e57234CrossRefPubMedPubMedCentralGoogle Scholar
  51. Unterseer S, Bauer E, Haberer G et al (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genom 15:823CrossRefGoogle Scholar
  52. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299CrossRefPubMedPubMedCentralGoogle Scholar
  53. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350CrossRefPubMedGoogle Scholar
  54. Warburton ML, Reif JC, Frisch M et al (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: Landraces, open pollinated varieties, and inbred lines. Crop Sci 48:617–624CrossRefGoogle Scholar
  55. Wilde K, Burger H, Prigge V, et al (2010) Testcross performance of doubled-haploid lines developed from European flint maize landraces. Plant Breed 129:181–185CrossRefGoogle Scholar
  56. Willis JH (1999) The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53:1678–1691CrossRefGoogle Scholar
  57. Wu Y, San Vicente F, Huang K et al (2016) Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor Appl Genet 129:1–13CrossRefGoogle Scholar
  58. Yandell BS (1997) Practical data analysis for designed experiments. Chapman & HallGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations