Skip to main content

From Mendel’s discovery on pea to today’s plant genetics and breeding

Commemorating the 150th anniversary of the reading of Mendel’s discovery

Abstract

Key message

This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel.

Abstract

In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.

This is a preview of subscription content, access via your institution.

References

  • Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A et al (2004) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of Het-A and TART elements at telomeres. Mol Biol Evol 21:1613–1619

    CAS  PubMed  Article  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  PubMed  Article  Google Scholar 

  • Arelli PR, Pantalone VR, Allen FL, Mengistu A (2007) Registration of soybean germplasm JTN-5303. J Plant Regist 1:69–70

    Article  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144

    Article  Google Scholar 

  • Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67:715–725

    CAS  PubMed  Article  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding-prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Bainotti C, Fraschina J, Salines JH, Nisi JE, Dubcovsky J et al (2009) Registration of ‘BIOINTA 2004’ wheat. J Plant Regist 3:165–169

    Article  Google Scholar 

  • Balasubramanian S, Klenerman D, Bentley D (2004) U.S. Patent No. 6,787,308. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Barr AR, Jefferies SP, Warner P, Moody DP, Chalmers KJ, Langridge P (2000) Marker-assisted selection in theory and practice. In: proceedings of the 8th international barley genetics symposium, vol I. Adelaide, pp. 167–178

  • Basavaraj H, Singh VK, Singh A, Singh A, Singh A et al (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrids. Mol Breed 26:293–305

    CAS  Article  Google Scholar 

  • Bateson W (1902) Mendel’s principles of heredity. Cambridge at the University Press, New York GP Putnam’s Sons. Qv Part II with biographical notice of Mendel and translation of the paper on hybridization, 317–361

    Book  Google Scholar 

  • Beaver JS, Porch TG, Zapata M (2008) Registration of ‘Verano’white bean. J Plant Regist 2:187–189

    Article  Google Scholar 

  • Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43

    CAS  PubMed  Article  Google Scholar 

  • Bennet MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  Google Scholar 

  • Bennetzen JL, Kellog EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet. doi:10.1007/s00122-016-2772-5

  • Bhattacharyya MK, Smith AM, Ellis THN, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding star-branching enzyme. Cell 60:115–122

    CAS  PubMed  Article  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    PubMed  Article  CAS  Google Scholar 

  • Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B et al (1992) HeT-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12:3910–3918

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bishop BE (1986) Mendel's opposition to evolution and to Darwin. J Hered 87:205–213

    Article  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez A, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    CAS  PubMed  Article  Google Scholar 

  • Brevis JC, Dubcovsky J (2008) Effect of the Gpc-B1 region from Triticum turgidum ssp. dicoccoides on grain yield, thousand grain weight and protein yield, pp. 1–3. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L and Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium, Sydney University Press, Brisbane

  • Bustamam M, Tabien RE, Suwarno A, Abalos MC, Kadir TS et al. (2002) Asian rice biotechnology network: improving popular cultivars through marker-assisted backcrossing by the NARES. Poster presented at the international rice congress, Beijing, 16–20 Sept 2002

  • Callender LA (1988) Gregor Mendel: an opponent of descent with modification. Hist Sci 26:41–75

    Article  Google Scholar 

  • Cao LY, Zhuang JY, Zhan XD, Zheng KL, Cheng SH (2003) Hybrid rice resistant to bacterial blight developed by marker assisted selection. Chin J Rice Sci 17:184–186

    CAS  Google Scholar 

  • Castle WE (1903) Mendel’s law of heredity. Science 18:396–406

    CAS  PubMed  Article  Google Scholar 

  • Castle WE (1921) An improved method of estimating the number of genetic factors concerned in cases of blending inheritance. Science 54:223

    CAS  PubMed  Article  Google Scholar 

  • Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G et al (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    CAS  Article  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Correns C (1900) G. Mendel’s Regel über das Verhalten der Nachkommenshaft der Rassenbastarde. Ber Dtsch Bot Ges 8:158–168

    Google Scholar 

  • Creighton H, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci U S A 17:492–497

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L et al (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60

    CAS  PubMed  Article  Google Scholar 

  • Daniel L, Hartl DL, Fairbanks DJ (2007) Mud sticks: on the alleged falsification of Mendel's data. Genetics 175:975–979

    Google Scholar 

  • Darwin CR (1859) The origin of species by means of natural selection, or, the preservation of favored races in the struggle for life. Murray, London

    Google Scholar 

  • Darwin CR (1875) The variation of animals and plants under domestication, vol 2, 2nd edn. Murray, London Reprinted 1988, New York: New York University Press

    Google Scholar 

  • de Vries H (1900a) The law of segregation of hybrids (English translation). In: Stern C, Sherwood ER (eds) The origin of genetics: a Mendel source book, 1966. W. H Freeman, San Francisco, pp 107–117

    Google Scholar 

  • de Vries H (1900b) Das Spaltungsgesetz der Bastarde. Ber Dtsch Bot Ges 18:83–90

    Google Scholar 

  • de Vries H (1900c) Sur la loi de disjonction des hybrides. C R l’Acad Sci 130:845–847

    Google Scholar 

  • DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401

    Article  Google Scholar 

  • DePauw RM, Knox RE, Thomas JB, Smith M, Clarke JM et al (2009) Goodeve hard red spring wheat. Can J Plant Sci 89:937–944

    Article  Google Scholar 

  • Di Trocchio F (1991) Mendel’s experiments: a reinterpretation. J Hist Biol 3:485–519

    Article  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    CAS  PubMed  Article  Google Scholar 

  • Dubcovsky J, Chicaiza O, Jackson L (2008) PVP for HRS wheat variety “Lassik”. PVP No. 200800176

  • Dunn LC (1965) A short history of genetics: the development of some of the main lines of thought, 1864–1939. McGraw-Hill, New York

    Google Scholar 

  • East EM (1916) Studies on the size of inheritance in Nicotiana. Genetics 1:164–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards AWF (1993) Mendel, Galton, Fisher. Aust J Stat 35:129–140 (Second Sir Ronald Fisher Lecture, University of Adelaide)

    Article  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    CAS  PubMed  Article  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Rev Genet 5:435–445

    CAS  PubMed  Article  Google Scholar 

  • Ellis THN, Hofer JI, Timmerman-Vaughan GM, Coyne CJ, Hellens RP (2011) Mendel, 150 years on. Trends Plant Sci 16:590–596

    CAS  PubMed  Article  Google Scholar 

  • Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H et al (2015) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341

    PubMed  Article  CAS  Google Scholar 

  • Everson EH, Schaller CW (1955) The genetics of yield differences associated with awn barbing in the barley hybrid (Lion × Atlas) × Atlas. Agron J 47:276–280

    Article  Google Scholar 

  • Fairbanks DJ, Rytting B (2001) Mendelian controversies: a botanical and historical review. Am J Bot 88:737–752

    CAS  PubMed  Article  Google Scholar 

  • FAO (2015) FAOSTAT 2013. http://faostat3.fao.org. Accessed 22 Sept 2015

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fisher RA (1936) Has Mendel’s work been rediscovered? Ann Sci 1:115–137

    Article  Google Scholar 

  • Flemming W (1879) Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen. Archiv für Mikroskopische Anatomie 16(1):302. doi:10.1007/BF02956386

    Article  Google Scholar 

  • Flemming W (1880) Beiträge zur Kenntniss der Zelle und Ihrer Lebenserscheinungen”. Archiv für Mikroskopische Anatomie 18(1):151. doi:10.1007/BF02952594 Reprinted in J Cell Biol 25:581–589 (1965)

    Article  Google Scholar 

  • Focke WO (1881) Die Pflanzen-Mischlinge. Ein Beitrag zur Biologie der Gewachse. Gebr Borntrager, Berlin

    Google Scholar 

  • Franklin A, Edwards WF, Fairbanks DJ, Hartl DL, Seidenfeld T (2008) Ending the Mendel-Fisher Controversy. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap E, Cong B et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    CAS  PubMed  Article  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    CAS  PubMed  Article  Google Scholar 

  • Frost HB (1921) Genetic terminology. Am Nat 55:567–570

    Article  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31013:397–405

    Article  CAS  Google Scholar 

  • Gale MD, Devos KD (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gandhi RV, Rudresh NS, Shivamurthy M, Hittalmani S (2012) Performance and adoption of new aerobic rice variety MAS 946-1 (Sharada) in southern Karnataka. Karnataka J Agric Sci 25:5–8

    Google Scholar 

  • Gasking E (1959) Why was Mendel’s work ignored? J Hist Ideas 20:60–84

    Article  Google Scholar 

  • Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theor Appl Genet 46:319–330

    CAS  PubMed  Article  Google Scholar 

  • Gliboff S (2013) The Many Sides of Gregor Mendel. In: Dietrich MR, Harman O (eds) Outsider scientists: boundary crossers and innovation in biology. University of Chicago Press, Chicago, pp 27–44

    Google Scholar 

  • Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP et al (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139

    CAS  Article  Google Scholar 

  • Graybosch RA, Peterson CJ, Baenziger PS, Baltensperger DD, Nelson LA et al (2009) Registration of ‘Mace’ hard red winter wheat. J Plant Regist 3:51–56

    Article  Google Scholar 

  • Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101:791–804

    CAS  PubMed  Article  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S et al (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    CAS  PubMed  Article  Google Scholar 

  • Hardin B (2000) Rice breeding gets marker assists. Agric Res 48:11

    Google Scholar 

  • Hartl DL, Orel V (1992) What did Gregor Mendel think he discovered? Genetics 131:245–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methane sulfonate-induced mutant bulks. Plant Physiol 160:591–600

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hash CT, Sharma A, Kolesnikova-Allen MA, Singh SD, Thakur RP et al (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J SAT Agric Res 2:1–3

    Google Scholar 

  • Hayes HK, East EM (1915) Further experiments on inheritance in maize. Conn Agric Exp Stn Bull 188:1–31

    Google Scholar 

  • Hayes PM, Corey AE, Mundt C, Toojinda T, Vivar H (2003) Registration of ‘Tango’ barley. Crop Sci 43:729–731

    Article  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    CAS  Article  Google Scholar 

  • Hellens RP, Moreau C, Lin-Wang K, Schwinn KE et al (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Helms TC, Nelson BD, Goos RJ (2008) Registration of ‘Sheyenne’ soybean. J Plant Regist 2:20–22

    Article  Google Scholar 

  • Heslot N, Jannink JL, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12

    Article  Google Scholar 

  • Hoffman H (1869) Untersuchungen zur Bestimmung des Werthes vos Species und Varietat. Riederfche Buchhandlung, Giessen

  • Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor Appl Genet. doi:10.1007/s00122-016-2773-4

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S et al (1997) Pyramiding of bacterial resistance genes in rice: marker aided selection using RFLP and PCR. Theor Appl Genet 95:313–320

    CAS  Article  Google Scholar 

  • Iftekharuddaula KM, Ahmed HU, Ghosal S, Moni ZR, Amin A et al (2015) Development of new submergence tolerant rice variety for Bangladesh using marker-assisted backcrossing. Rice Sci 22:16–26

    Article  Google Scholar 

  • Iltis H (1924) Gregor Johann Mendel. Leben, Werk und Wirkung. Julius Springer, Berlin

    Book  Google Scholar 

  • International Food Policy Research Institute (IFPRI) (2009) 13. Millions fed-proven successes in agricultural development. In: Spielman DJ, Pandya-Lorch R (ed). IFPRI, Washington DC

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M et al (2015) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:2013–2213

    Google Scholar 

  • Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276

    Article  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  Article  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    CAS  PubMed  Article  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    CAS  PubMed  Article  Google Scholar 

  • Kejnovsky E, Leitch I, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582

    PubMed  Article  Google Scholar 

  • Kelkar YD, Eckert KA, Chiarmonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21:2038–2048

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khanna A, Sharma V, Ellur RK, Shikari AB, Gopalakrishnan S et al (2015) Development and evaluation of near-isogenic lines for major blast resistance gene (s) in Basmati rice. Theor Appl Genet 128:1243–1259

    CAS  PubMed  Article  Google Scholar 

  • Kingsbury N (2009) Hybrid. The history and science of plant breeding. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145

    CAS  PubMed  Article  Google Scholar 

  • Klein J, Klein N (2013) Solitude of the humble genius: Gregor Johann Mendel. Springer, Berlin

    Book  Google Scholar 

  • Kokosar J, Kordis D (2013) Genesis and regulatory wiring of retroelement-derived domesticated genes: a phylogenomic perspective. Mol Biol Evol 30:1015–1031

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    CAS  PubMed  Article  Google Scholar 

  • Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR et al (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160

    CAS  PubMed  Article  Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55

    CAS  Article  Google Scholar 

  • Kumar J, Mir RR, Kumar N, Kumar A, Mohan A et al (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129:617–621

    CAS  Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  PubMed  Article  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ et al (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    CAS  PubMed  Article  Google Scholar 

  • Lindner H, Raissig MT, Sailer C, Shimosato-Asano H, Bruggmann R et al (2012) SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics 191:1381–1386

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    CAS  PubMed  Article  Google Scholar 

  • Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    CAS  PubMed  Article  Google Scholar 

  • Mallick N, Sharma JB, Tomar RS, Sivasamy M, Prabhu KV (2015) Marker-assisted backcross breeding to combine multiple rust resistance in wheat. Plant Breed 134:172–177

    CAS  Article  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mendel G (1866) Versuche uber Pflanzen-Hybriden. J Hered 42:3–47 (Reprinted in 1951)

    Google Scholar 

  • Mendel G (1870) On Hleraclum-hybrids obtained by artificial fertilisation (English translation). In: Stern C, Sherwood ER (eds) The origin of genetics: a Mendel source book, 1966. W. H. Freeman, San Francisco, pp 49–55

    Google Scholar 

  • Mendel G (1950) Gregor Mendel’s Letters to Carl Nägeli. Genetics 35(5, pt 2):1–29 (Originally published as: Abhandlungen der Mathematisch-Physischen Klasse der Königlich Sächsischen Gesellschaft der Wissenschaften 29: 189–265, 1905. Reprinted in “Carl Correns, Gesammelte Abhandlungen zur Vererbungswissenschaft aus periodischen Schriften” 1899–1924. (Fritz V. Wettstein ed.) Berlin, Julius Springer, 1924. pp. 1237–1281)

    CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerowitz EM (2001) Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Michael TPS, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:2

    Article  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    CAS  PubMed  Article  Google Scholar 

  • Monaghan FV, Corcos AF (1990) The real objective of Mendel’s paper. Biol Philos 5:267–292

    Article  Google Scholar 

  • Moore G, Devos KM, Wang ZM, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Article  Google Scholar 

  • Muewissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Google Scholar 

  • Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    CAS  PubMed  Article  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    CAS  PubMed  Article  Google Scholar 

  • Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155:329–336

    CAS  Article  Google Scholar 

  • Nogler GA (2006) The Lesser-Known Mendel: his experiments on Hieracium. Genetics 172:1–6

    PubMed  PubMed Central  Google Scholar 

  • Nugraha Y, Vergara GV, Mackill DJ, Ismail AB (2013) Response of Sub1 introgression lines of rice to various flooding conditions. Indonesian J Agric 14:15–26

    Article  Google Scholar 

  • Olby RC (1979) Mendel no Mendelian? Hist Sci 17:53–72 (Reprinted with minor changes in The Origins of Mendelism, 2nd ed., pp.234-258. Chicago University Press, 1985)

    Article  Google Scholar 

  • Oliver KR, Green WK (2009) Transposable elements: powerfull facilitators of evolution. Bioessays 31:703–714

    CAS  PubMed  Article  Google Scholar 

  • Opitz JM, Bianchi DW (2015) MENDEL: morphologist and Mathematician Founder of Genetics – To Begin a Celebration of the 2015 Sesquicentennial of Mendel’s Presentation in 1865 of his Versuche über Pflanzenhybriden. Mol Genet Genom Med 3:1–7

    Article  Google Scholar 

  • Orel V (1984) Mendel. Past masters series. Oxford University Press, Oxford

    Google Scholar 

  • Orel V (1996) Gregor Mendel, the first geneticist. Oxford University Press, Oxford Transl. Stephen Finn

    Google Scholar 

  • Orel V (2003) Gregor Mendel a počátky genetiky. Academia, Praha (in Czech)

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    CAS  PubMed  Article  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    CAS  PubMed  Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    CAS  PubMed  Article  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Ann Rev Plant Biol 61:349–372

    CAS  Article  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Botanical J Linn Soc 164:10–15

    Article  Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    CAS  PubMed  Article  Google Scholar 

  • Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    CAS  PubMed  Article  Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR et al (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8:19

    PubMed Central  Article  Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radick GM (2015) History of Science. Beyond the Mendel-Fisher Controversy. Science 350:159–160

    PubMed  Article  Google Scholar 

  • Rasmusson JM (1933) A contribution to the theory of quantitative character inheritance. Heredities 18:245–261

    Article  Google Scholar 

  • Reid JB, Ross JJ (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189:3–10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384

    Article  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    CAS  PubMed  Article  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    CAS  PubMed  Article  Google Scholar 

  • Sachs J (1890) History of botany (1530-1860). Authorised translation by Henry EF Garnsey. Clarendon Press, Oxford

    Book  Google Scholar 

  • Sandler I (2000) Development. Mendel's legacy to genetics. Genetics 154:7–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    CAS  PubMed  Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sant J (2014) Mendel, Darwin and Evolution. http://www.scientus.org/Mendel-Darwin.html. Accessed 22 Sept 2015

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Article  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    CAS  PubMed  Article  Google Scholar 

  • Schubert I, Fransz PF, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69

    CAS  PubMed  Article  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV et al (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    CAS  PubMed  Article  Google Scholar 

  • Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J et al (2015) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202:259–268

    Article  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    CAS  PubMed  Article  Google Scholar 

  • Shannon JG, Lee JD, Wrather JA, Sleper DA, Mian MA et al (2009) Registration of S99-2281 soybean germplasm line with resistance to frogeye leaf spot and three nematode species. J Plant Regist 3:94–98

    Article  Google Scholar 

  • Sheynin OB (1980) On the History of the Statistical Method in Biology. Arch Hist Exact Sci 22:323–371

    CAS  PubMed  Article  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Article  Google Scholar 

  • Shull GH (1921) Estimating the number of genetic factors concerned in blending inheritance. Am Nat 55:556–564

    Article  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘NemaTAM’peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V et al (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16

    Article  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopalakrishnan S et al (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78’. Plant Breed 132:486–495

    CAS  Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N et al (2015a) From QTL to variety harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    PubMed  Article  CAS  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM et al (2015b) Next generation sequencing for identification of candidate genes for fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J. doi:10.1111/pbi.12470

    Google Scholar 

  • Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64

    Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 11:883–889

    Article  CAS  Google Scholar 

  • Soudek D (1984) Gregor Mendel and the people around him. Am J Hum Genet 36:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Stebbins G (1966) Chromosomal variation and evolution: polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152:1463–1469

    CAS  PubMed  Article  Google Scholar 

  • Strickfaden H, Zunhammer A, Koningsbruggen S, Kohler D, Cremer T (2011) 4D chromatin dynamics in cycling cells. Nucleus 1:284–297

    Google Scholar 

  • Stuber C, Goodman M, Moll R (1982) Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci 22:737–740

    Article  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA et al (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422

    Article  Google Scholar 

  • Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39

    Article  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    Article  Google Scholar 

  • Swift H (1950) The constancy of deoxyribose nucleic acids in plant nuclei. Proc Natl Acad Sci USA 36:643–654

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A et al (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    CAS  PubMed  Article  Google Scholar 

  • Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49:11–25

    Article  Google Scholar 

  • Taran B, Warkentin TD, Vandenberg A (2013) Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126:1639–1647

    CAS  PubMed  Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Article  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    CAS  PubMed  Article  Google Scholar 

  • Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-the-art sequencing technologies for plant genomics research. Brief Funct Genomics 11:3–11

    CAS  PubMed  Article  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tschermak E (1900) Über künstliche Kreuzung bei Pisum sativum. Berichte der deutschen botanischen Gesellschaft 18:232–239

    Google Scholar 

  • van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    PubMed  Article  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Article  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S et al (2013) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6:1–9

    Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H et al (2014a) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    PubMed  PubMed Central  Article  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J et al (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    CAS  PubMed  Article  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK et al (2014c) Marker-assisted backcrossing to introgress resistance to Fusarium wilt Race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7:1–11

    Article  CAS  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    CAS  PubMed  Article  Google Scholar 

  • Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38

    CAS  PubMed  Article  Google Scholar 

  • Weiling F (1991) Historical study: Johann Gregor Mendel 1822–1884. Am J Med Genet 40:1–25

    CAS  PubMed  Article  Google Scholar 

  • Weldon WFR (1902) Mendel’s laws of alternative inheritance in peas. Biometrika 1:228–254

    Article  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    CAS  PubMed  Article  Google Scholar 

  • Wynn J (2007) Alone in the garden: how Gregor Mendel’s inattention to audience may have affected the reception of his theory of inheritance in experiments in plant hybridization. Writ Commun 24:3–27

    Article  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Yu LX, Abate Z, Anderson JA, Bansal UK, Bariana HS, et al. (2009) Developing and optimizing markers for stem rust resistance in wheat. In: Proceedings, oral papers and posters, Technical Workshop, Borlaug Global Rust Initiative, Cd. Obregón, Sonora, Mexico, 17–20 Mar 2009

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    CAS  PubMed  Article  Google Scholar 

  • Zirkle C (1932) Some forgotten records of hybridization and sex in plants, 1716–1739. J Hered 23:433–448

    Google Scholar 

  • Zirkle C (1951) Gregor Mendel and his precursors. Isis 42:97–104

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (Grant 15-02891S to E.K. and 14-11782S to P.S.) and Palacký University Grant IGA 2015_1 and IGA 2016_1 to P.S. Various colleagues are acknowledged for their fruitful discussions on the earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Smýkal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Bürstmayr and J. Vollmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smýkal, P., K. Varshney, R., K. Singh, V. et al. From Mendel’s discovery on pea to today’s plant genetics and breeding. Theor Appl Genet 129, 2267–2280 (2016). https://doi.org/10.1007/s00122-016-2803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2803-2

Keywords

  • Quantitative Trait Locus
  • Common Bean
  • Genomic Selection
  • Genetically Modify Crop
  • Cluster Regularly Interspaced Short Palindromic Repeat