Theoretical and Applied Genetics

, Volume 129, Issue 12, pp 2267–2280 | Cite as

From Mendel’s discovery on pea to today’s plant genetics and breeding

Commemorating the 150th anniversary of the reading of Mendel’s discovery
  • Petr Smýkal
  • Rajeev K. Varshney
  • Vikas K. Singh
  • Clarice J. Coyne
  • Claire Domoney
  • Eduard Kejnovský
  • Thomas Warkentin
Review
Part of the following topical collections:
  1. From phenotype to genotype - Celebrating 150 years of Mendelian genetics in plant breeding research. Hermann Buerstmayr, Johann Vollmann

Abstract

Key message

This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel.

Abstract

In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.

References

  1. Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A et al (2004) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of Het-A and TART elements at telomeres. Mol Biol Evol 21:1613–1619PubMedCrossRefGoogle Scholar
  2. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178PubMedCrossRefGoogle Scholar
  3. Arelli PR, Pantalone VR, Allen FL, Mengistu A (2007) Registration of soybean germplasm JTN-5303. J Plant Regist 1:69–70CrossRefGoogle Scholar
  4. Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144CrossRefGoogle Scholar
  5. Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67:715–725PubMedCrossRefGoogle Scholar
  6. Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding-prospects and challenges. Curr Sci 87:607–619Google Scholar
  7. Bainotti C, Fraschina J, Salines JH, Nisi JE, Dubcovsky J et al (2009) Registration of ‘BIOINTA 2004’ wheat. J Plant Regist 3:165–169CrossRefGoogle Scholar
  8. Balasubramanian S, Klenerman D, Bentley D (2004) U.S. Patent No. 6,787,308. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  9. Barr AR, Jefferies SP, Warner P, Moody DP, Chalmers KJ, Langridge P (2000) Marker-assisted selection in theory and practice. In: proceedings of the 8th international barley genetics symposium, vol I. Adelaide, pp. 167–178Google Scholar
  10. Basavaraj H, Singh VK, Singh A, Singh A, Singh A et al (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrids. Mol Breed 26:293–305CrossRefGoogle Scholar
  11. Bateson W (1902) Mendel’s principles of heredity. Cambridge at the University Press, New York GP Putnam’s Sons. Qv Part II with biographical notice of Mendel and translation of the paper on hybridization, 317–361CrossRefGoogle Scholar
  12. Beaver JS, Porch TG, Zapata M (2008) Registration of ‘Verano’white bean. J Plant Regist 2:187–189CrossRefGoogle Scholar
  13. Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43PubMedCrossRefGoogle Scholar
  14. Bennet MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90CrossRefGoogle Scholar
  15. Bennetzen JL, Kellog EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet. doi:10.1007/s00122-016-2772-5
  18. Bhattacharyya MK, Smith AM, Ellis THN, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding star-branching enzyme. Cell 60:115–122PubMedCrossRefGoogle Scholar
  19. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524PubMedCrossRefGoogle Scholar
  20. Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B et al (1992) HeT-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12:3910–3918PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bishop BE (1986) Mendel's opposition to evolution and to Darwin. J Hered 87:205–213CrossRefGoogle Scholar
  22. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedPubMedCentralGoogle Scholar
  23. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  24. Bouchez A, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959PubMedPubMedCentralGoogle Scholar
  25. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438PubMedCrossRefGoogle Scholar
  26. Brevis JC, Dubcovsky J (2008) Effect of the Gpc-B1 region from Triticum turgidum ssp. dicoccoides on grain yield, thousand grain weight and protein yield, pp. 1–3. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L and Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium, Sydney University Press, BrisbaneGoogle Scholar
  27. Bustamam M, Tabien RE, Suwarno A, Abalos MC, Kadir TS et al. (2002) Asian rice biotechnology network: improving popular cultivars through marker-assisted backcrossing by the NARES. Poster presented at the international rice congress, Beijing, 16–20 Sept 2002Google Scholar
  28. Callender LA (1988) Gregor Mendel: an opponent of descent with modification. Hist Sci 26:41–75CrossRefGoogle Scholar
  29. Cao LY, Zhuang JY, Zhan XD, Zheng KL, Cheng SH (2003) Hybrid rice resistant to bacterial blight developed by marker assisted selection. Chin J Rice Sci 17:184–186Google Scholar
  30. Castle WE (1903) Mendel’s law of heredity. Science 18:396–406PubMedCrossRefGoogle Scholar
  31. Castle WE (1921) An improved method of estimating the number of genetic factors concerned in cases of blending inheritance. Science 54:223PubMedCrossRefGoogle Scholar
  32. Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G et al (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117CrossRefGoogle Scholar
  34. Cong L, Ran FA, Cox D, Lin S, Barretto R et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  35. Correns C (1900) G. Mendel’s Regel über das Verhalten der Nachkommenshaft der Rassenbastarde. Ber Dtsch Bot Ges 8:158–168Google Scholar
  36. Creighton H, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci U S A 17:492–497PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L et al (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60PubMedCrossRefGoogle Scholar
  38. Daniel L, Hartl DL, Fairbanks DJ (2007) Mud sticks: on the alleged falsification of Mendel's data. Genetics 175:975–979Google Scholar
  39. Darwin CR (1859) The origin of species by means of natural selection, or, the preservation of favored races in the struggle for life. Murray, LondonGoogle Scholar
  40. Darwin CR (1875) The variation of animals and plants under domestication, vol 2, 2nd edn. Murray, London Reprinted 1988, New York: New York University PressGoogle Scholar
  41. de Vries H (1900a) The law of segregation of hybrids (English translation). In: Stern C, Sherwood ER (eds) The origin of genetics: a Mendel source book, 1966. W. H Freeman, San Francisco, pp 107–117Google Scholar
  42. de Vries H (1900b) Das Spaltungsgesetz der Bastarde. Ber Dtsch Bot Ges 18:83–90Google Scholar
  43. de Vries H (1900c) Sur la loi de disjonction des hybrides. C R l’Acad Sci 130:845–847Google Scholar
  44. DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401CrossRefGoogle Scholar
  45. DePauw RM, Knox RE, Thomas JB, Smith M, Clarke JM et al (2009) Goodeve hard red spring wheat. Can J Plant Sci 89:937–944CrossRefGoogle Scholar
  46. Di Trocchio F (1991) Mendel’s experiments: a reinterpretation. J Hist Biol 3:485–519CrossRefGoogle Scholar
  47. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603PubMedCrossRefGoogle Scholar
  48. Dubcovsky J, Chicaiza O, Jackson L (2008) PVP for HRS wheat variety “Lassik”. PVP No. 200800176Google Scholar
  49. Dunn LC (1965) A short history of genetics: the development of some of the main lines of thought, 1864–1939. McGraw-Hill, New YorkGoogle Scholar
  50. East EM (1916) Studies on the size of inheritance in Nicotiana. Genetics 1:164–176PubMedPubMedCentralGoogle Scholar
  51. Edwards AWF (1993) Mendel, Galton, Fisher. Aust J Stat 35:129–140 (Second Sir Ronald Fisher Lecture, University of Adelaide) CrossRefGoogle Scholar
  52. Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125PubMedPubMedCentralGoogle Scholar
  53. Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320PubMedCrossRefGoogle Scholar
  54. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Rev Genet 5:435–445PubMedCrossRefGoogle Scholar
  55. Ellis THN, Hofer JI, Timmerman-Vaughan GM, Coyne CJ, Hellens RP (2011) Mendel, 150 years on. Trends Plant Sci 16:590–596PubMedCrossRefGoogle Scholar
  56. Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H et al (2015) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341PubMedCrossRefGoogle Scholar
  57. Everson EH, Schaller CW (1955) The genetics of yield differences associated with awn barbing in the barley hybrid (Lion × Atlas) × Atlas. Agron J 47:276–280CrossRefGoogle Scholar
  58. Fairbanks DJ, Rytting B (2001) Mendelian controversies: a botanical and historical review. Am J Bot 88:737–752PubMedCrossRefGoogle Scholar
  59. FAO (2015) FAOSTAT 2013. http://faostat3.fao.org. Accessed 22 Sept 2015
  60. Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529PubMedPubMedCentralCrossRefGoogle Scholar
  61. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fisher RA (1936) Has Mendel’s work been rediscovered? Ann Sci 1:115–137CrossRefGoogle Scholar
  63. Flemming W (1879) Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen. Archiv für Mikroskopische Anatomie 16(1):302. doi:10.1007/BF02956386 CrossRefGoogle Scholar
  64. Flemming W (1880) Beiträge zur Kenntniss der Zelle und Ihrer Lebenserscheinungen”. Archiv für Mikroskopische Anatomie 18(1):151. doi:10.1007/BF02952594 Reprinted in J Cell Biol 25:581–589 (1965)CrossRefGoogle Scholar
  65. Focke WO (1881) Die Pflanzen-Mischlinge. Ein Beitrag zur Biologie der Gewachse. Gebr Borntrager, BerlinGoogle Scholar
  66. Franklin A, Edwards WF, Fairbanks DJ, Hartl DL, Seidenfeld T (2008) Ending the Mendel-Fisher Controversy. University of Pittsburgh Press, PittsburghGoogle Scholar
  67. Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap E, Cong B et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  68. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789PubMedCrossRefGoogle Scholar
  69. Frost HB (1921) Genetic terminology. Am Nat 55:567–570CrossRefGoogle Scholar
  70. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31013:397–405CrossRefGoogle Scholar
  72. Gale MD, Devos KD (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gandhi RV, Rudresh NS, Shivamurthy M, Hittalmani S (2012) Performance and adoption of new aerobic rice variety MAS 946-1 (Sharada) in southern Karnataka. Karnataka J Agric Sci 25:5–8Google Scholar
  74. Gasking E (1959) Why was Mendel’s work ignored? J Hist Ideas 20:60–84CrossRefGoogle Scholar
  75. Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theor Appl Genet 46:319–330PubMedCrossRefGoogle Scholar
  76. Gliboff S (2013) The Many Sides of Gregor Mendel. In: Dietrich MR, Harman O (eds) Outsider scientists: boundary crossers and innovation in biology. University of Chicago Press, Chicago, pp 27–44Google Scholar
  77. Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP et al (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139CrossRefGoogle Scholar
  78. Graybosch RA, Peterson CJ, Baenziger PS, Baltensperger DD, Nelson LA et al (2009) Registration of ‘Mace’ hard red winter wheat. J Plant Regist 3:51–56CrossRefGoogle Scholar
  79. Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101:791–804PubMedCrossRefGoogle Scholar
  80. Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S et al (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777PubMedCrossRefGoogle Scholar
  81. Hardin B (2000) Rice breeding gets marker assists. Agric Res 48:11Google Scholar
  82. Hartl DL, Orel V (1992) What did Gregor Mendel think he discovered? Genetics 131:245–253PubMedPubMedCentralGoogle Scholar
  83. Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methane sulfonate-induced mutant bulks. Plant Physiol 160:591–600PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hash CT, Sharma A, Kolesnikova-Allen MA, Singh SD, Thakur RP et al (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J SAT Agric Res 2:1–3Google Scholar
  85. Hayes HK, East EM (1915) Further experiments on inheritance in maize. Conn Agric Exp Stn Bull 188:1–31Google Scholar
  86. Hayes PM, Corey AE, Mundt C, Toojinda T, Vivar H (2003) Registration of ‘Tango’ barley. Crop Sci 43:729–731CrossRefGoogle Scholar
  87. Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75CrossRefGoogle Scholar
  88. Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847CrossRefGoogle Scholar
  89. Hellens RP, Moreau C, Lin-Wang K, Schwinn KE et al (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230PubMedPubMedCentralCrossRefGoogle Scholar
  90. Helms TC, Nelson BD, Goos RJ (2008) Registration of ‘Sheyenne’ soybean. J Plant Regist 2:20–22CrossRefGoogle Scholar
  91. Heslot N, Jannink JL, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12CrossRefGoogle Scholar
  92. Hoffman H (1869) Untersuchungen zur Bestimmung des Werthes vos Species und Varietat. Riederfche Buchhandlung, GiessenGoogle Scholar
  93. Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor Appl Genet. doi:10.1007/s00122-016-2773-4
  94. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S et al (1997) Pyramiding of bacterial resistance genes in rice: marker aided selection using RFLP and PCR. Theor Appl Genet 95:313–320CrossRefGoogle Scholar
  95. Iftekharuddaula KM, Ahmed HU, Ghosal S, Moni ZR, Amin A et al (2015) Development of new submergence tolerant rice variety for Bangladesh using marker-assisted backcrossing. Rice Sci 22:16–26CrossRefGoogle Scholar
  96. Iltis H (1924) Gregor Johann Mendel. Leben, Werk und Wirkung. Julius Springer, BerlinCrossRefGoogle Scholar
  97. International Food Policy Research Institute (IFPRI) (2009) 13. Millions fed-proven successes in agricultural development. In: Spielman DJ, Pandya-Lorch R (ed). IFPRI, Washington DCGoogle Scholar
  98. Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M et al (2015) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:2013–2213Google Scholar
  99. Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276CrossRefGoogle Scholar
  100. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  101. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154PubMedCrossRefGoogle Scholar
  103. Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632PubMedCrossRefGoogle Scholar
  104. Kejnovsky E, Leitch I, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582PubMedCrossRefGoogle Scholar
  105. Kelkar YD, Eckert KA, Chiarmonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21:2038–2048PubMedPubMedCentralCrossRefGoogle Scholar
  106. Khanna A, Sharma V, Ellur RK, Shikari AB, Gopalakrishnan S et al (2015) Development and evaluation of near-isogenic lines for major blast resistance gene (s) in Basmati rice. Theor Appl Genet 128:1243–1259PubMedCrossRefGoogle Scholar
  107. Kingsbury N (2009) Hybrid. The history and science of plant breeding. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  108. Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145PubMedCrossRefGoogle Scholar
  109. Klein J, Klein N (2013) Solitude of the humble genius: Gregor Johann Mendel. Springer, BerlinCrossRefGoogle Scholar
  110. Kokosar J, Kordis D (2013) Genesis and regulatory wiring of retroelement-derived domesticated genes: a phylogenomic perspective. Mol Biol Evol 30:1015–1031PubMedPubMedCentralCrossRefGoogle Scholar
  111. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921PubMedCrossRefGoogle Scholar
  112. Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR et al (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160PubMedCrossRefGoogle Scholar
  113. Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55CrossRefGoogle Scholar
  114. Kumar J, Mir RR, Kumar N, Kumar A, Mohan A et al (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129:617–621CrossRefGoogle Scholar
  115. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  116. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedCrossRefGoogle Scholar
  117. Li JF, Norville JE, Aach J, McCormack M, Zhang D et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ et al (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763PubMedCrossRefGoogle Scholar
  119. Lindner H, Raissig MT, Sailer C, Shimosato-Asano H, Bruggmann R et al (2012) SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics 191:1381–1386PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552PubMedCrossRefGoogle Scholar
  121. Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621CrossRefGoogle Scholar
  122. Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697PubMedCrossRefGoogle Scholar
  123. Mallick N, Sharma JB, Tomar RS, Sivasamy M, Prabhu KV (2015) Marker-assisted backcross breeding to combine multiple rust resistance in wheat. Plant Breed 134:172–177CrossRefGoogle Scholar
  124. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564PubMedPubMedCentralCrossRefGoogle Scholar
  125. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355PubMedPubMedCentralCrossRefGoogle Scholar
  126. Mendel G (1866) Versuche uber Pflanzen-Hybriden. J Hered 42:3–47 (Reprinted in 1951)Google Scholar
  127. Mendel G (1870) On Hleraclum-hybrids obtained by artificial fertilisation (English translation). In: Stern C, Sherwood ER (eds) The origin of genetics: a Mendel source book, 1966. W. H. Freeman, San Francisco, pp 49–55Google Scholar
  128. Mendel G (1950) Gregor Mendel’s Letters to Carl Nägeli. Genetics 35(5, pt 2):1–29 (Originally published as: Abhandlungen der Mathematisch-Physischen Klasse der Königlich Sächsischen Gesellschaft der Wissenschaften 29: 189–265, 1905. Reprinted in “Carl Correns, Gesammelte Abhandlungen zur Vererbungswissenschaft aus periodischen Schriften” 1899–1924. (Fritz V. Wettstein ed.) Berlin, Julius Springer, 1924. pp. 1237–1281)PubMedGoogle Scholar
  129. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  130. Meyerowitz EM (2001) Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19PubMedPubMedCentralCrossRefGoogle Scholar
  131. Michael TPS, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:2CrossRefGoogle Scholar
  132. Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81PubMedCrossRefGoogle Scholar
  133. Monaghan FV, Corcos AF (1990) The real objective of Mendel’s paper. Biol Philos 5:267–292CrossRefGoogle Scholar
  134. Moore G, Devos KM, Wang ZM, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  135. Muewissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829Google Scholar
  136. Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273PubMedCrossRefGoogle Scholar
  137. Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583PubMedPubMedCentralCrossRefGoogle Scholar
  138. Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776PubMedCrossRefGoogle Scholar
  139. Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056PubMedPubMedCentralCrossRefGoogle Scholar
  140. Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155:329–336CrossRefGoogle Scholar
  141. Nogler GA (2006) The Lesser-Known Mendel: his experiments on Hieracium. Genetics 172:1–6PubMedPubMedCentralGoogle Scholar
  142. Nugraha Y, Vergara GV, Mackill DJ, Ismail AB (2013) Response of Sub1 introgression lines of rice to various flooding conditions. Indonesian J Agric 14:15–26CrossRefGoogle Scholar
  143. Olby RC (1979) Mendel no Mendelian? Hist Sci 17:53–72 (Reprinted with minor changes in The Origins of Mendelism, 2nd ed., pp.234-258. Chicago University Press, 1985) CrossRefGoogle Scholar
  144. Oliver KR, Green WK (2009) Transposable elements: powerfull facilitators of evolution. Bioessays 31:703–714PubMedCrossRefGoogle Scholar
  145. Opitz JM, Bianchi DW (2015) MENDEL: morphologist and Mathematician Founder of Genetics – To Begin a Celebration of the 2015 Sesquicentennial of Mendel’s Presentation in 1865 of his Versuche über Pflanzenhybriden. Mol Genet Genom Med 3:1–7CrossRefGoogle Scholar
  146. Orel V (1984) Mendel. Past masters series. Oxford University Press, OxfordGoogle Scholar
  147. Orel V (1996) Gregor Mendel, the first geneticist. Oxford University Press, Oxford Transl. Stephen FinnGoogle Scholar
  148. Orel V (2003) Gregor Mendel a počátky genetiky. Academia, Praha (in Czech)Google Scholar
  149. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607PubMedCrossRefGoogle Scholar
  150. Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400PubMedCrossRefGoogle Scholar
  151. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  152. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedPubMedCentralCrossRefGoogle Scholar
  153. Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Ann Rev Plant Biol 61:349–372CrossRefGoogle Scholar
  154. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Botanical J Linn Soc 164:10–15CrossRefGoogle Scholar
  155. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28PubMedCrossRefGoogle Scholar
  156. Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892PubMedCrossRefGoogle Scholar
  157. Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR et al (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8:19PubMedCentralCrossRefGoogle Scholar
  158. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228PubMedPubMedCentralCrossRefGoogle Scholar
  159. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  160. Radick GM (2015) History of Science. Beyond the Mendel-Fisher Controversy. Science 350:159–160PubMedCrossRefGoogle Scholar
  161. Rasmusson JM (1933) A contribution to the theory of quantitative character inheritance. Heredities 18:245–261CrossRefGoogle Scholar
  162. Reid JB, Ross JJ (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189:3–10PubMedPubMedCentralCrossRefGoogle Scholar
  163. Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384CrossRefGoogle Scholar
  164. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRefGoogle Scholar
  165. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedCrossRefGoogle Scholar
  166. Sachs J (1890) History of botany (1530-1860). Authorised translation by Henry EF Garnsey. Clarendon Press, OxfordCrossRefGoogle Scholar
  167. Sandler I (2000) Development. Mendel's legacy to genetics. Genetics 154:7–11PubMedPubMedCentralGoogle Scholar
  168. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448PubMedCrossRefGoogle Scholar
  169. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedPubMedCentralCrossRefGoogle Scholar
  170. Sant J (2014) Mendel, Darwin and Evolution. http://www.scientus.org/Mendel-Darwin.html. Accessed 22 Sept 2015
  171. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedPubMedCentralGoogle Scholar
  172. Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199CrossRefGoogle Scholar
  173. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551PubMedCrossRefGoogle Scholar
  174. Schubert I, Fransz PF, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69PubMedCrossRefGoogle Scholar
  175. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV et al (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160PubMedCrossRefGoogle Scholar
  176. Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J et al (2015) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202:259–268CrossRefGoogle Scholar
  177. Shan Q, Wang Y, Li J, Zhang Y, Chen K et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  178. Shannon JG, Lee JD, Wrather JA, Sleper DA, Mian MA et al (2009) Registration of S99-2281 soybean germplasm line with resistance to frogeye leaf spot and three nematode species. J Plant Regist 3:94–98CrossRefGoogle Scholar
  179. Sheynin OB (1980) On the History of the Statistical Method in Biology. Arch Hist Exact Sci 22:323–371PubMedCrossRefGoogle Scholar
  180. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  181. Shull GH (1921) Estimating the number of genetic factors concerned in blending inheritance. Am Nat 55:556–564CrossRefGoogle Scholar
  182. Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918CrossRefGoogle Scholar
  183. Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘NemaTAM’peanut. Crop Sci 43:1561CrossRefGoogle Scholar
  184. Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V et al (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16CrossRefGoogle Scholar
  185. Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopalakrishnan S et al (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78’. Plant Breed 132:486–495Google Scholar
  186. Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N et al (2015a) From QTL to variety harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287PubMedCrossRefGoogle Scholar
  187. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM et al (2015b) Next generation sequencing for identification of candidate genes for fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J. doi:10.1111/pbi.12470 Google Scholar
  188. Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64Google Scholar
  189. Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 11:883–889CrossRefGoogle Scholar
  190. Soudek D (1984) Gregor Mendel and the people around him. Am J Hum Genet 36:495–498PubMedPubMedCentralGoogle Scholar
  191. Spindel J, Begum H, Akdemir D, Virk P, Collard B et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982PubMedPubMedCentralCrossRefGoogle Scholar
  192. Stebbins G (1966) Chromosomal variation and evolution: polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152:1463–1469PubMedCrossRefGoogle Scholar
  193. Strickfaden H, Zunhammer A, Koningsbruggen S, Kohler D, Cremer T (2011) 4D chromatin dynamics in cycling cells. Nucleus 1:284–297Google Scholar
  194. Stuber C, Goodman M, Moll R (1982) Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci 22:737–740CrossRefGoogle Scholar
  195. Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA et al (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422CrossRefGoogle Scholar
  196. Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39CrossRefGoogle Scholar
  197. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251CrossRefGoogle Scholar
  198. Swift H (1950) The constancy of deoxyribose nucleic acids in plant nuclei. Proc Natl Acad Sci USA 36:643–654PubMedPubMedCentralCrossRefGoogle Scholar
  199. Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A et al (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283PubMedCrossRefGoogle Scholar
  200. Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49:11–25CrossRefGoogle Scholar
  201. Taran B, Warkentin TD, Vandenberg A (2013) Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126:1639–1647PubMedCrossRefGoogle Scholar
  202. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  203. Thoday JM (1961) Location of polygenes. Nature 191:368–370CrossRefGoogle Scholar
  204. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  205. Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-the-art sequencing technologies for plant genomics research. Brief Funct Genomics 11:3–11PubMedCrossRefGoogle Scholar
  206. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedPubMedCentralCrossRefGoogle Scholar
  207. Tschermak E (1900) Über künstliche Kreuzung bei Pisum sativum. Berichte der deutschen botanischen Gesellschaft 18:232–239Google Scholar
  208. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426PubMedCrossRefGoogle Scholar
  209. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  210. Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S et al (2013) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6:1–9Google Scholar
  211. Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H et al (2014a) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781PubMedPubMedCentralCrossRefGoogle Scholar
  212. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J et al (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462PubMedCrossRefGoogle Scholar
  213. Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK et al (2014c) Marker-assisted backcrossing to introgress resistance to Fusarium wilt Race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7:1–11CrossRefGoogle Scholar
  214. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922PubMedCrossRefGoogle Scholar
  215. Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38PubMedCrossRefGoogle Scholar
  216. Weiling F (1991) Historical study: Johann Gregor Mendel 1822–1884. Am J Med Genet 40:1–25PubMedCrossRefGoogle Scholar
  217. Weldon WFR (1902) Mendel’s laws of alternative inheritance in peas. Biometrika 1:228–254CrossRefGoogle Scholar
  218. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  219. Wynn J (2007) Alone in the garden: how Gregor Mendel’s inattention to audience may have affected the reception of his theory of inheritance in experiments in plant hybridization. Writ Commun 24:3–27CrossRefGoogle Scholar
  220. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedCrossRefGoogle Scholar
  221. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  222. Yu LX, Abate Z, Anderson JA, Bansal UK, Bariana HS, et al. (2009) Developing and optimizing markers for stem rust resistance in wheat. In: Proceedings, oral papers and posters, Technical Workshop, Borlaug Global Rust Initiative, Cd. Obregón, Sonora, Mexico, 17–20 Mar 2009Google Scholar
  223. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  224. Zirkle C (1932) Some forgotten records of hybridization and sex in plants, 1716–1739. J Hered 23:433–448Google Scholar
  225. Zirkle C (1951) Gregor Mendel and his precursors. Isis 42:97–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Petr Smýkal
    • 1
  • Rajeev K. Varshney
    • 2
  • Vikas K. Singh
    • 2
  • Clarice J. Coyne
    • 3
  • Claire Domoney
    • 4
  • Eduard Kejnovský
    • 5
  • Thomas Warkentin
    • 6
  1. 1.Department of Botany, Faculty of SciencesPalacký University in OlomoucOlomoucCzech Republic
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  3. 3.USDA-ARSWashington State UniversityPullmanUSA
  4. 4.John Innes CentreNorwichUK
  5. 5.Department of Plant Developmental Genetics, Institute of BiophysicsCzech Academy of SciencesBrnoCzech Republic
  6. 6.Crop Development CentreUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations