Abstract
Key message
We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population.
Abstract
Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Andreoli C, Bassoi MC, Brunetta D (2006) Genetic control of seed dormancy and pre-harvest sprouting in wheat. Sci Agric 63:564–566
Ashikawa I, Abe F, Nakamura S (2010) Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Sci 179:536–542
Ashikawa I, Mori M, Nakamura S, Abe F (2014) A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res 23:621–629
Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284
Bassoi MC, Flintham J (2005) Relationship between grain colour and preharvest sprouting-resistance in wheat. Pesqui Agropecu Bras 40:981–988
Bi HH, Sun YW, Xiao YG, Xia LQ (2014) Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica 195:197–207
Carson CB, Hattori T, Rosenkrans L, Vasil V, Vasil IK, Peterson PA, McCarty DR (1997) The quiescent/colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed. Plant J 12:1231–1240
Chang C, Feng JM, Si HQ, Yin B, Zhang HP, Ma CX (2010a) Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol Breed 25:517–525
Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010b) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490
Chang C, Zhang HP, Zhao QX, Feng JM, Si HQ, Lu J, Ma CX (2011) Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica 179:343–353
Chen CX, Cai SB, Bai GH (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21:351–358
Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45
Gale MD, Lenton JR (1987) Preharvest sprouting in wheat: a complex genetic and physiological problem affecting bread making quality in UK wheats. Asp Appl Biol 15:115–124
Gatford KT, Eastwood RF, Halloran GM (2002) Germination inhibitors in bracts surrounding the grain of Triticum tauschii. Funct Plant Biol 29:881–890
Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor Appl Genet 104:39–47
Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187
Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Gene Dev 6:609–618
Hickey LT, Dieters MJ, DeLacy IH, Christopher MJ, Kravchuk OY, Banks PM (2009) Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172:183–195
Himi E, Noda K (2004) Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot 55:365–375
Himi E, Noda K (2005) Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica 143:239–242
Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53:1569–1574
Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122:1561–1576
Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant 115:428–441
Jaiswal V, Mir RR, Mohan A, Balyan HS, Gupta PK (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102
Kim KH, Shin SH, Lee HS, Kim JY, Son JH, Kang CS, Park JC, Park CS (2014) Relationship between pre-harvest sprouting and functional markers, TaVp-1A, TaSdr-B1 and TaPHS1 in Korean wheat cultivars. Res on Crops 15:604–612
King R, Richards R (1984) Water uptake in relation to pre-harvest sprouting damage in wheat:ear characteristics. Aust J Agr Res 35:327–336
Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36
Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175
Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genom 4:94–101
Kulwal PL, Kumar N, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059
Kulwal P, Ishikawa G, Benscher D, Feng ZY, Yu LX, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805
Lagudah ES, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii:natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395
Lee Y, Kende H (2001) Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol 127:645–654
Lei L, Zhu X, Wang S, Zhu M, Carver BF, Yan L (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS One 8:e73330
Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374
Li HH, Ribaut JM, Li ZL, Wang JK (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260
Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395
Liu HY, Yu X, Cui DY, Sun MH, Sun WN, Tang ZC, Kwak SS, Su WA (2007) The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res 17:638–649
Liu SB, Cai SB, Graybosch R, Chen CX, Bai GH (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699
Liu SB, Sehgal SK, Li JR, Lin M, Trick HN, Yu JM, Gill BS, Bai GH (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273
Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364
McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905
McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208
Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283
Mohan A, Kulwal P, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329
Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323
Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119:1223–1235
Murphey M, Kovach K, Elnacash T, He H, Bentsink L, Donohue K (2015) DOG1-imposed dormancy mediates germination responses to temperature cues. Environ Exp Bot 112:33–43
Nakamura S, Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52:875–876
Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229
Ogbonnaya FC, Imtiaz M, Ye G, Hearnden PR, Hernandez E, Eastwood RF, van Ginkel M, Shorter SC, Winchester JM (2008) Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet 116:891–902
Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700
Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496
Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Börner A (2012) An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica 188:409–417
Simsek S, Ohm J-B, Lu H, Rugg M, Berzonsky W, Alamri MS, Mergoum M (2014) Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food Agr 94:205–212
Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114
Somyong S, Ishikawa G, Munkvold JD, Tanaka J, Benscher D, Cho Y-G, Sorrells ME (2014) Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theor Appl Genet 127:1843–1855
Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797
Suzuki M, Ketterling MG, Li QB, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132:1664–1677
Tan MK, Sharp PJ, Lu MQ, Howes N (2006) Genetics of grain dormancy in a white wheat. Aust J Agr Res 57:1157–1165
Torada A, Ikeguchi S, Koike M (2005) Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica 143:251–255
Walker-Simmons M (1988) Enhancement of ABA responsiveness in wheat embryos by high temperature. Plant Cell Environ 11:769–775
Xia LQ, Ganal MW, Shewry PR, He ZH, Yang Y, Röder MS (2008) Exploiting the diversity of Viviparous-1 gene associated with pre-harvest sprouting tolerance in European wheat varieties. Euphytica 159:411–417
Xiao SH, Zhang XY, Yan CS, Lin H (2002) Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: an overview of the current strategy. Euphytica 126:35–38
Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Wilkinson M, Jones HD, Shewry PR, Xia LQ (2007) Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot 58:2863–2871
Yang Y, Chen XM, He ZH, Röder M, Xia LQ (2009) Distribution of Vp-1 alleles in Chinese white-grained landraces, historical and current wheat cultivars. Cereal Res Commun 37:169–177
Yang Y, Zhang CL, Liu SX, Sun YQ, Meng JY, Xia LQ (2014) Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance. Mol Breed 33:75–88
Zhang XQ, Li CD, Tay A, Lance R, Mares D, Cheong J, Cakir M, Ma JH, Appels R (2008) A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed 22:227–236
Zhang CL, He XY, He ZH, Wang LH, Xia XC (2009) Cloning of TaCYP707A1 gene that encodes ABA 8′-Hydroxylase in common wheat (Triticum aestivum L.). Agric Sci China 8:902–909
Zhang YJ, Miao XL, Xia XC, He ZH (2014) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866
Acknowledgments
We thank Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for review of this manuscript. This study was supported by the National Natural Science Foundation of China (31461143021, 31371623), Gene Transformation Projects (2016ZX08009-003, 2016ZX08002003-003), Beijing Municipal Science and Technology Project (D151100004415003), National Key Project (2016YFD0101802), Hebei Province Natural Science Fund (C2015301009) and Financial Fund of Heibei Province (F15R055029).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest in regard to this manuscript.
Ethical standards
We declare that these experiments comply with the ethical standards in China where they were performed.
Additional information
Communicated by P. Langridge.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, Y., Xia, X. & He, Z. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet 130, 81–89 (2017). https://doi.org/10.1007/s00122-016-2793-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00122-016-2793-0


