Skip to main content
Log in

A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Here we report the production of a set of wheat - Aegilops speltoides Robertsonian translocations covering all Ae. speltoides chromosome arms except the long arm of the homoeologous group 4 chromosome.

Abstract

Aegilops speltoides of the Poaceae family is the most probable donor of the B and G genomes of polyploid Triticum species and also an important source of resistance to diseases and pests of wheat. Previously, we reported the production of a complete set of T aestivum-Ae. speltoides chromosome addition lines and a set of disomic S(B/A)-genome chromosome substitution lines. The isolation of compensating Robertsonian translocations (RobTs) composed of alien chromosome arms translocated to homoeologous wheat chromosome arms is the important next step to exploit the genetic variation of a wild relative of wheat. Here, we report the development of molecular markers specific for the S-genome chromosomes and their use in the isolation of a set of 13 compensating wheat-Ae. speltoides RobTs covering the S genome of Ae. speltoides except for the long arm of chromosome 4S. Most of the RobTs were fully fertile and will facilitate mapping of genes to specific chromosome arms and also will accelerate the introgression of agronomically useful traits from Ae. speltoides into wheat by homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cainong JC, Zavatsky LE, Chen MS, Johnson J, Friebe B, Gill BS, Lukaszewski AJ (2010) Wheat-rye T2BS·2BL-2RL recombinants with resistance to hessian fly (H21). Crop Sci 50:920–925

    Article  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611

    Article  CAS  PubMed  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J (1976) The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377

    Article  Google Scholar 

  • Dvorak J, Zhang H-B (1990) Variation in repeated nucleotide sequences shed light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops. J Smartt and NW Simmonds Longman Group, London, pp 184–192

    Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Qi LL, Liu C, Gill BS (2011) Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines. Cytogenet Genome Res 134:144–150

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian B, Zkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin K, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Qi L, Liu W, Zhao W, Wilson J, Friebe B, Gill BS (2011a) Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome 54:836–844

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Jin Y, Rouse M, Friebe B, Gill BS, Pumphrey MO (2011b) Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Lukaszewski AJ (1993) Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkas’ origin. Genome 36:821–824

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (1994) Manipulation of the genome by chromosome breakage. In: Proceedings, US–Japan Symposium on Classical and Molecular Cytogenetic Analysis. Gill BS, Raupp WJ (eds), KS Agric Exp Sta. Rep 95-352-D, Manhattan, Kansas. pp 136–139

  • Lukaszewski AJ (1997) Further manipulations by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94:257–261

    Article  Google Scholar 

  • Maestra B, Naranjo T (1998) Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet 97:181–186

    Article  Google Scholar 

  • Marais GF, Marais AS (1994) The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 79:75–80

    Article  Google Scholar 

  • Nagy ED, Eder C, Molnar-Lang M, Lelley T (2003) Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat-rye translocation. Euphytica 132:243–250

    Article  CAS  Google Scholar 

  • Nave M, Avni R, Ben-Zvi Hale I, Distelfeld A (2016) QTLs for uniform grain dimensions and germination selected during wheat domestication are co-localized on chromosome 4B. Theor Appl Genet 219:1303–1315

    Article  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L. em Thell. and its relatives. Wheat Inf Serv 81:51–55

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agric Univ Pap 94(7):i–xiv, 1–512 (joint publication of Wageningen Agricultural University, The Netherlands, and the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria)

Download references

Acknowledgments

We thank W. John Raupp for editorial assistance and Duane L. Wilson for the excellent assistance. This research was supported by Grants from Bayer CropScience, the WGRC I/UCRC NSF contract 1338897, the Kansas Wheat Commission, and the Kansas Crop Improvement Association. This paper is contribution number 16-375-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Additional information

Communicated by B. Keller.

W. Liu and D. H. Koo have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Koo, DH., Friebe, B. et al. A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. Theor Appl Genet 129, 2359–2368 (2016). https://doi.org/10.1007/s00122-016-2774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2774-3

Keywords

Navigation