Advertisement

Theoretical and Applied Genetics

, Volume 129, Issue 9, pp 1639–1655 | Cite as

Genetically modified (GM) crops: milestones and new advances in crop improvement

  • Ayushi Kamthan
  • Abira Chaudhuri
  • Mohan Kamthan
  • Asis DattaEmail author
Review

Abstract

Key message

New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses.

Abstract

Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

Keywords

Genetically Modify Genetically Modify Crop Genome Editing Climacteric Fruit Pokeweed Antiviral Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A (2014) Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 31:5302CrossRefGoogle Scholar
  2. Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Overexpression of a DEAD box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354CrossRefGoogle Scholar
  3. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111PubMedCrossRefGoogle Scholar
  4. Aragao FJ, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088PubMedCrossRefGoogle Scholar
  5. Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schroder R, Johnston JW, Schaffer RJ (2012) Down-regulation of polygalacturonase 1 alters firmness, tensile strength and water loss in apple (Malus domestica) fruit. BMC Plant Biol 12:129PubMedPubMedCentralCrossRefGoogle Scholar
  6. Azam M, Kesarwani M, Chakraborty S, Natarajan K, Datta A (2002) Cloning and characterization of 5′-flanking region of oxalate decarboxylase gene from Flammulina velutipes. Biochem J 367:67–75PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145CrossRefGoogle Scholar
  8. Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28:94–107PubMedCrossRefGoogle Scholar
  9. Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187CrossRefGoogle Scholar
  10. Bhatnagar MK, Prasad P, Mathur PB, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502PubMedCrossRefGoogle Scholar
  11. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  12. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedCrossRefGoogle Scholar
  13. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  14. Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragao JFJL (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact. 20:717–726PubMedCrossRefGoogle Scholar
  15. Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115CrossRefGoogle Scholar
  16. Brinch-Pedersen H, Hatzack F, Stoger E, Arcalis E, Pontopidan K, Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54:4624–4632PubMedCrossRefGoogle Scholar
  17. Brini F, Yamamoto A, Jlaiel L et al (2011) Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol 52:676–688PubMedCrossRefGoogle Scholar
  18. Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11:599–613PubMedCrossRefGoogle Scholar
  19. Cardoso FM et al (2014) Single domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88:82788296CrossRefGoogle Scholar
  20. Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321PubMedCrossRefGoogle Scholar
  21. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedPubMedCentralCrossRefGoogle Scholar
  22. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor based agricultural biotechnology products. Plant Physiol 147:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a non allergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Prakash Naik S, Pande PC, Chakrborti SK, Datta A (2010) Next generation protein rich potato by expressing a seed protein gene Am A1 as a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 41:17533–17538CrossRefGoogle Scholar
  25. Chandra Babu R, Zhang J, Blum A, David Ho TH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862CrossRefGoogle Scholar
  26. Chapple C, Carpita N (1998) Plant cell walls as targets for biotechnology. Curr Opin Plant Biol 1:179–185PubMedCrossRefGoogle Scholar
  27. Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931PubMedCrossRefGoogle Scholar
  28. Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218PubMedCrossRefGoogle Scholar
  29. Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of aspargine synthetase-1 reduces the crylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10:913–924PubMedCrossRefGoogle Scholar
  30. Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643PubMedCrossRefGoogle Scholar
  31. Chilton MD (1983) A vector for introducing new genes into plants. Sci Am 248:36–45CrossRefGoogle Scholar
  32. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  33. Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529PubMedCrossRefGoogle Scholar
  34. Collinge DB, Lund OS, Thordal-Christensen H (2008) What are the prospects for genetically engineered, disease resistant plants? Eur J Plant Pathol 121:217–231CrossRefGoogle Scholar
  35. Cook DR, Varshney RK (2010) From genome studies to agricultural biotechnology: closing the gap between basic plant science and applied agriculture. Curr Opin Plant Biol 13:115–118PubMedCrossRefGoogle Scholar
  36. Curtin SJ et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473PubMedPubMedCentralCrossRefGoogle Scholar
  37. Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D et al (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. Methods Mol Biol 1069:25–42PubMedCrossRefGoogle Scholar
  38. Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562PubMedPubMedCentralCrossRefGoogle Scholar
  39. Datta K, Baisakh N, Ganguly M, Krishnan S, Shinozaki KY, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586PubMedCrossRefGoogle Scholar
  40. Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466CrossRefGoogle Scholar
  41. Djukanovic V et al (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899PubMedCrossRefGoogle Scholar
  42. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6:135–145PubMedCrossRefGoogle Scholar
  43. Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880PubMedCrossRefGoogle Scholar
  44. Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7:e45117PubMedPubMedCentralCrossRefGoogle Scholar
  45. Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ebinuma H, Komamine A (2001) MAT (multi auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113CrossRefGoogle Scholar
  47. Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392CrossRefGoogle Scholar
  48. Eggeling L, Oberle S, Sahm H (1998) Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30PubMedCrossRefGoogle Scholar
  49. Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122PubMedCrossRefGoogle Scholar
  50. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–6132PubMedCrossRefGoogle Scholar
  51. Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Bio/Technology 13:577–582PubMedCrossRefGoogle Scholar
  52. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  53. Feng Z et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2008) A transgenic durum wheat line that is free of marker genes and expresses 1DY10. J Cereal Sci 48:439–445CrossRefGoogle Scholar
  56. Gao H et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187PubMedCrossRefGoogle Scholar
  57. Gaskell G, Bauer M (2001) The years of controversy. In: Gaskell G, Bauer M (eds) Biotechnology 1996–1999. Science Museum, London, pp 3–11Google Scholar
  58. Geißler R et al (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509PubMedCrossRefGoogle Scholar
  59. Ghosh S, Meli VK, Kumar A, Thakur A, Chakraborty N, Chakraborty S, Datta A (2011) The N-glycan processing enzymes α-mannosidase and β-D-1 N acetylhexosaminidase are involved in ripening-associated softening in the non climacteric fruits of capsicum. J Exp Bot 62:571–582PubMedCrossRefGoogle Scholar
  60. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  61. Gonsalves D, Ferreira S, Manshardt R, Fitch M, Slightom J (1998) Transgenic virus resistant papaya: new hope for controlling papaya ringspot virus in Hawaii. APS Feature, American Pythopathological Society. doi: 10.1094/PHP-2000-0621-01-RV Google Scholar
  62. Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100:658–664CrossRefGoogle Scholar
  63. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol. 78:51–65CrossRefGoogle Scholar
  64. Hallwass M et al (2014) The Tomato spotted wilt virus cell to cell movement protein (NSM) triggers a hypersensitive response in Sw5 containing resistant tomato lines and in Nicotiana benthamiana transformed with the functional Sw5b resistance gene copy Mol. Plant Pathol 15:871880Google Scholar
  65. Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155PubMedCrossRefGoogle Scholar
  66. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  67. Haun W et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol 12:934–940CrossRefGoogle Scholar
  68. Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264CrossRefGoogle Scholar
  69. Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43PubMedPubMedCentralCrossRefGoogle Scholar
  70. Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using aTi-plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  71. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231PubMedCrossRefGoogle Scholar
  72. Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10:237–247PubMedCrossRefGoogle Scholar
  73. Irfan M, Ghosh S, Kumar V, Chakraborty N, Chakraborty S, Datta A (2014) Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening. J Exp Bot 65:5835–5848PubMedPubMedCentralCrossRefGoogle Scholar
  74. Irfan M, Ghosh S, Meli VS, Kumar A, Kumar V, Chakraborty N, Chakraborty S, Datta A (2016) Fruit ripening regulation of α-mannosidase expression by the MADS box transcription factor RIPENING INHIBITOR and ethylene. Front Plant Sci 7:10. doi: 10.3389/fpls.2016.00010 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jacobsen E, Schouten HJ (2009) Cisgenesis: an important subinvention for traditional plant breeding companies. Euphytica 170:235–247CrossRefGoogle Scholar
  76. Jagadeesh BH, Prabha TN (2002) β-Hexosaminidase, an enzyme from ripening bell capsicum (Capsicum annuum var. variata). Phytochemistry 61:295–300PubMedCrossRefGoogle Scholar
  77. Jagadeesh BH, Prabha TN, Srinivasan K (2004) Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var. variata). Plant Sci 167:1263–1271CrossRefGoogle Scholar
  78. James C (2013) Global status of commercialized biotech/GM crops. Brief no. 46. ISAAA, IthacaGoogle Scholar
  79. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants, vol 2. Springer, Berlin, pp 67–132CrossRefGoogle Scholar
  80. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144PubMedCrossRefGoogle Scholar
  81. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188PubMedPubMedCentralCrossRefGoogle Scholar
  83. Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476. doi: 10.1371/journal.pone.0024476 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kamthan A, Kamthan M, Azam M, Chakraborty N, Chakraborty S, Datta A (2012) Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality. Sci Rep 2:951PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kamthan A, Kamthan M, Kumar A, Sharma P, Ansari S, Thakur SS, Chaudhuri A, Asis Datta (2015a) A Calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter. Sci Rep 5:14578. doi: 10.1038/srep14578 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015b) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208PubMedPubMedCentralCrossRefGoogle Scholar
  88. Karaba A, Dixit S, Greco R et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A (2000) Oxalate decarboxylase from Collybia velutips: molecular cloning and its over expression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem 275:7230–7238PubMedCrossRefGoogle Scholar
  90. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc Natl Acad Sci USA 93:1156–1160PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS et al (2008) Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881PubMedCrossRefGoogle Scholar
  92. Komari T, Hiei Y, Saito Y, Murai N, Kumasiashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174PubMedCrossRefGoogle Scholar
  93. Komor AC, Kim YB, Packer MS, Juris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. doi: 10.1038/nature17946 Google Scholar
  94. Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A (2016) Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J 14:1394–1405PubMedCrossRefGoogle Scholar
  95. Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lassen J, Madsen KH, Sandøe P (2002) Ethics and genetic engineering—lessons to be learned from GM foods. Bioprocess Biosyst Eng 24:263–271CrossRefGoogle Scholar
  97. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748PubMedCrossRefGoogle Scholar
  98. Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shao Y, Luo Y (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008PubMedCrossRefGoogle Scholar
  99. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  100. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68CrossRefGoogle Scholar
  101. Litz RE, Padilla G (2012) Genetic transformation of fruit trees. In: Priyadarshan PM, Schnell RJ (eds) Genomics of tree crops. Springer, Berlin, pp 117–153CrossRefGoogle Scholar
  102. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  103. Liu HK, Yang C, Wei ZW (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168:997–1003CrossRefGoogle Scholar
  104. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365PubMedCrossRefGoogle Scholar
  105. Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190SPubMedCrossRefGoogle Scholar
  106. Mahfouz MM et al (2012) Targeted transcriptional repression using a chimeric TALE–SRDX repressor protein. Plant Mol Biol 78:311–321PubMedCrossRefGoogle Scholar
  107. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through non homologous end joining. Genome Res 23:539–546PubMedPubMedCentralCrossRefGoogle Scholar
  108. Marra MC, Piggott NE, Goodwin BK (2010) The anticipated value of SmartStax™ for US corn growers Ag. BioForum 13:1–12Google Scholar
  109. Matas AJ, Gapper NE, Chung MY, Giovannoni JJ, Rose JKC (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20:197–203PubMedCrossRefGoogle Scholar
  110. Mehta A, Datta A (1991) Oxalate decarboxylase from Collybia velutipes: purification, characterization and cDNA cloning. J Biol Chem 266:23548–23553PubMedGoogle Scholar
  111. Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci USA 107:2413–2418PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mlalazi B, Welsch R, Namanya P, Khanna H, Geijskes RJ, Harrison MD, Harding R, Dale JL, Bateson M (2012) Isolation and functional characterization of banana phytoene synthase genes as potential cisgenes. Planta. 236:1585–1598PubMedCrossRefGoogle Scholar
  113. Moeller L, Wang K (2008) Engineering with precision: tools for the new generation of transgenic crops. Bioscience 58:391–401CrossRefGoogle Scholar
  114. Molesini B, Pii Y, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30:80–88PubMedCrossRefGoogle Scholar
  115. Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Kemp JD, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482PubMedCrossRefGoogle Scholar
  116. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  117. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428PubMedCrossRefGoogle Scholar
  118. O’Quinn PR, Nelssen JL, Goodband RD, Knabe DA, Woodworth JC, Tokach MD, Lohrmann TT (2000) Nutritional value of a genetically improved high-lysine, high-oil corn for young pigs. J Anim Sci 78:2144–2149PubMedCrossRefGoogle Scholar
  119. Otang NV et al (2014) Transgenic tobacco lines expressing defective CMV replicase derived dsRNA are resistant to CMVO and CMVY. Mol Biotechnol 56:5063Google Scholar
  120. Ow DW (2005) Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol Plant 41:213–219CrossRefGoogle Scholar
  121. Ow DW (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18:115–120PubMedCrossRefGoogle Scholar
  122. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Therapy 7:49–66CrossRefGoogle Scholar
  123. Peiró A et al (2014) The movement protein (NSm) of Tomato spotted wilt virus is the a virulence determinant in the tomato Sw5 gene based resistance. Mol Plant Pathol 15:802813CrossRefGoogle Scholar
  124. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S et al (2014) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589PubMedCrossRefGoogle Scholar
  125. Priem B, Gross KC (1992) Mannosyl and xylosyl-containing glycans promote tomato (Lycopersicon esculentum, Mill.) fruit ripening. Plant Physiol 98:399–401PubMedPubMedCentralCrossRefGoogle Scholar
  126. Priem B, Gitti R, Bush CA, Gross KC (1993) Structure of ten free N-glycans in ripening tomato fruit (arabinose is a constituent of a plant N-glycan). Plant Physiol 102:445–458PubMedPubMedCentralCrossRefGoogle Scholar
  127. PriyaSethu KM, Prabha TN (1997) α-D-Mannosidase from Capsicum annuum. Phytochemistry 44:383–387CrossRefGoogle Scholar
  128. Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ et al (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 Genes Genom Genet 3:1707–1715Google Scholar
  129. Qu J, Ye J, Fang R (2007) Artificial micro RNA mediated virus resistance in plants. J Virol 81:6690–6699PubMedPubMedCentralCrossRefGoogle Scholar
  130. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486PubMedCrossRefGoogle Scholar
  131. Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T et al (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops. 1(4):220–229PubMedCrossRefGoogle Scholar
  132. Quesada MA, Blanco-Portales R, Pose S, Garcia-Gago JA, Jimenez-Bermudez S, Munoz-Serrano A, Caballero JL, Pliego-Alfaro F, Mercado JA, Munoz-Blanco J (2009) Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol 150:1022–1032PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98CrossRefGoogle Scholar
  134. Raina A, Datta A (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc Natl Acad Sci USA 89:11774–11778PubMedPubMedCentralCrossRefGoogle Scholar
  135. Raymond PJ, McFarlane I, Hartley Phipps R, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21CrossRefGoogle Scholar
  136. Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension of traditional plant breeding. Trends Plant Sci 12:397–403PubMedCrossRefGoogle Scholar
  137. Rommens CM, Yan H, Swords K, Richael C, Ye J (2008) Low acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853PubMedPubMedCentralCrossRefGoogle Scholar
  138. Russell S, Hoopes J, Odell J (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 223:369–378Google Scholar
  139. Sanahuja G, Banakar R, Twyman R, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300PubMedCrossRefGoogle Scholar
  140. Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I et al (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442–1452PubMedCrossRefGoogle Scholar
  141. Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 5:pls047PubMedCrossRefGoogle Scholar
  142. Schouten HJ, Jacobsen E (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci 13:260–261PubMedCrossRefGoogle Scholar
  143. Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753PubMedPubMedCentralCrossRefGoogle Scholar
  144. Seo JS, Sohn HB, Noh K et al (2012) Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Mol Breed 29:601–608CrossRefGoogle Scholar
  145. Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64:153–161PubMedCrossRefGoogle Scholar
  146. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  147. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  148. Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16:724–734PubMedCrossRefGoogle Scholar
  149. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677PubMedPubMedCentralCrossRefGoogle Scholar
  150. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320PubMedCrossRefGoogle Scholar
  151. Smith J, Grizot S, Arnould S, Duclert A, Epinat JC et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149PubMedPubMedCentralCrossRefGoogle Scholar
  152. Song D, Chen J, Song F, Zheng Z (2006) A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biol 8:587–596PubMedCrossRefGoogle Scholar
  153. Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sunilkumar G et al (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521PubMedCrossRefGoogle Scholar
  156. Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T, Matsuda T (1996) Reduction of 14-16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 391:341–345PubMedCrossRefGoogle Scholar
  157. Takahashi Y, Bin Nasir KH, Ito A, Kanzaki H, Matsumura H, Saitoh H (2007) A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1- induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant J 49:1030–1040PubMedCrossRefGoogle Scholar
  158. Thamizhmani R, Vijayachari P (2014) Association of dengue virus infection susceptibility with polymorphisms of 2′5′ oligoadenylate synthetase genes: a case–control study. Braz J Infect Dis 18:548550CrossRefGoogle Scholar
  159. Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39PubMedCrossRefGoogle Scholar
  160. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual Helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127PubMedGoogle Scholar
  161. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  162. Uozumi N, Schroeder JI (2010) Ion channels and plant stress: past, present and future. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, signaling and communication in plants. Springer, Berlin Heidelberg, pp 1–22CrossRefGoogle Scholar
  163. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238CrossRefGoogle Scholar
  164. Ursin VA (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. Symposium: improving human nutrition through genomics, proteomics and biotechnologies. American Society for Nutritional Sciences, Bethesda, pp 4271–4274Google Scholar
  165. Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311PubMedCrossRefGoogle Scholar
  166. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371PubMedCrossRefGoogle Scholar
  167. Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1:199–206PubMedCrossRefGoogle Scholar
  168. Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the cre/lox site specific recombination system. Transgenic Res 14:605–614PubMedCrossRefGoogle Scholar
  169. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefGoogle Scholar
  170. Way HM, Kazan K, Mitter N, Goulter KC, Birch RG, Manners JM (2002) Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol Mol Plant Pathol 60:275–282CrossRefGoogle Scholar
  171. Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597PubMedCrossRefGoogle Scholar
  172. Wendt T et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefGoogle Scholar
  173. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115PubMedCrossRefGoogle Scholar
  174. Whitham S, Mccormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato (hypersensitive response/plant disease resistance. Proc Natl Acad Sci USA 93:8776–8781PubMedPubMedCentralCrossRefGoogle Scholar
  175. Woo HJ, Cho HS, Lim SH, Shin KS, Lee SM, Lee KJ, Kim DH, Cho YG (2009) Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res. 18:455–465PubMedCrossRefGoogle Scholar
  176. Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30PubMedCrossRefGoogle Scholar
  177. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383PubMedCrossRefGoogle Scholar
  178. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983PubMedCrossRefGoogle Scholar
  179. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralGoogle Scholar
  180. Yang SM, Gao MQ, Xu CW, Gao JC, Deshpande S, Lin SP et al (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169PubMedPubMedCentralCrossRefGoogle Scholar
  181. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  182. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedCrossRefGoogle Scholar
  183. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168PubMedCrossRefGoogle Scholar
  184. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhang P, Vanderschuren H, Futterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3:385397CrossRefGoogle Scholar
  186. Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253PubMedCrossRefGoogle Scholar
  187. Zhang F et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhang H et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807PubMedCrossRefGoogle Scholar
  189. Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhou YL, Xu JL, Zhou SC, Yu J, Xie XW, Xu MR et al (2009) Pyramiding Xa23 and Rxo1 for resistance to two bacterial diseases into an elite indica rice variety using molecular approaches. Mol Breed 23:279–287CrossRefGoogle Scholar
  191. Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco Bio Technol 12:807–812Google Scholar
  192. Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y (2006) Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16:385–398PubMedCrossRefGoogle Scholar
  193. Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ayushi Kamthan
    • 1
  • Abira Chaudhuri
    • 1
  • Mohan Kamthan
    • 1
    • 2
  • Asis Datta
    • 1
    Email author
  1. 1.National Institute of Plant Genome ResearchNew DelhiIndia
  2. 2.Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations