Theoretical and Applied Genetics

, Volume 129, Issue 8, pp 1519–1529 | Cite as

Molecular and genetic characterization of barley mutants and genetic mapping of mutant rpr2 required for Rpg1-mediated resistance against stem rust

  • Upinder GillEmail author
  • Robert Brueggeman
  • Jayaveeramuthu Nirmala
  • Yuan Chai
  • Brian Steffenson
  • Andris KleinhofsEmail author
Original Article


Key message

This study describes the generation, screening, genetic and molecular characterization, and high-resolution mapping of barley mutants susceptible to stem rust ( Puccinia graminis f. sp. tritici ) races MCCF and HKHJ.


A single gene, Rpg1, has protected barley cultivars against many races of stem rust pathogen (Puccinia graminis f. sp. tritici) for the last 70 years in the United States and Canada. To identify signaling components of protein product RPG1, we employed a mutagenesis approach. Using this approach, six mutants exhibiting susceptibility to Puccinia graminis f. sp. tritici races MCCF and HKHJ were identified in the gamma irradiated M2 population of resistant cultivar Morex, which carries Rpg1 on chromosome 7H. The mutants retained a functional Rpg1 gene and an apparently functional protein, suggesting that the mutated genes were required for downstream or upstream signaling. Selected mutants were non-allelic, hence each mutant represents a unique gene. Low and high-resolution genetic mapping of the rpr2 mutant identified chromosome 6H (bin 6) as the location of the mutated gene. The target region was reduced to 0.6 cM and gene content analyzed. Based on the published barley genomic sequence, the target region contains approximately 157 genes, including a set that encodes putative leucine-rich receptor-like protein kinases, which may be strong candidates for the gene of interest. Overall, this study presents a strong platform for future map-based cloning of genes identified in this mutant screen.


Stem Rust Stem Rust Resistance Allelism Test Race TTKSK Stem Rust Race 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Research Initiative of the United States Department of Agriculture, Cooperative State Research, Education and Extension Service Grant No. 2007-35301-18205 to AK and BJS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2016_2721_MOESM1_ESM.pdf (333 kb)
Supplementary material 1 (PDF 332 kb)


  1. Batista R, Saibo N, Lourenco T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA 105:3640–3645CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99(14):9328–9333CrossRefPubMedPubMedCentralGoogle Scholar
  4. Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92:6597–6601CrossRefPubMedPubMedCentralGoogle Scholar
  5. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965CrossRefPubMedGoogle Scholar
  6. Chai Y, Nirmala J, Kleinhofs A, Steffenson B (2012) Failure of RPG1 protein to degrade in high-copy Rpg1 transgenic barley lines results in susceptibility to stem rust. Physiol Mol Plant Path 80:10–18CrossRefGoogle Scholar
  7. Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M (2015) BARLEX—the barley draft genome explorer. Mol Plant 8:964–966CrossRefPubMedGoogle Scholar
  8. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  9. Freialdenhoven A, Scherag B, Hollricher K, Collinge DB, Thordal-Christensen H, Schulze-Lefert P (1994) Nar1 and Nar2, two loci required for Mla12-specified race-specific resistance to powdery mildew in barley. Plant Cell 6:983–994PubMedPubMedCentralGoogle Scholar
  10. Gill U, Nirmala J, Brueggeman R, Kleinhofs A (2012) Identification, characterization and putative function of HvRin4, a barley homolog of Arabidopsis Rin4. Physiol Mol Plant Path 80:41–49CrossRefGoogle Scholar
  11. Green PJ (1993) Control of mRNA stability in higher plants. Plant Physiol 102:1065–1070PubMedPubMedCentralGoogle Scholar
  12. Hammond-Kosack KE, Jones DA, Jones J (1994) Identification of two genes required in tomato for full Cf-9 dependent resistance to Cladosporium fulvum. Plant Cell 6:361–374PubMedPubMedCentralGoogle Scholar
  13. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, KIeinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369CrossRefPubMedGoogle Scholar
  14. Innes RW (1998) Genetic dissection of R gene signal transduction pathways. Curr Opin Plant Biol 1:299–304CrossRefPubMedGoogle Scholar
  15. Jin Y, Steffenson B, Fetch T (1994) Sources of resistance to pathotype QCC of Puccinia graminis f. sp. tritici in barley. Crop Sci 34:285–288CrossRefGoogle Scholar
  16. Jørgensen JH (1996) Effect of three suppressors on the expression of powdery mildew resistance genes in barley. Genome 39:492–498CrossRefPubMedGoogle Scholar
  17. Kleinhofs A, Kilian A, Maroof MAS, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum-vulgare) genome. Theor Appl Genet 86(6):705–712CrossRefPubMedGoogle Scholar
  18. Kurowska M, Labocha-Pawłowska A, Gnizda D, Maluszynski M, Szarejko I (2012) Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res Fund Mol Mech Mut 738–739:52–70CrossRefGoogle Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  20. Manly KF, Cudmore JR, Meer JM (2001) MapManager QTX: cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMedGoogle Scholar
  21. Mayer KF, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H et al (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mayer KF, Martis M, Hedley PE, Simkova H, Liu H, Morris JA et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705CrossRefPubMedPubMedCentralGoogle Scholar
  24. Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst 84:361–370CrossRefPubMedGoogle Scholar
  25. Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688CrossRefPubMedPubMedCentralGoogle Scholar
  26. Muñoz-Amatriaín M, Lonardi S, Luo M, Madishetty K, Svensson JT, Matthew M et al (2015) Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome. Plant J. doi: 10.1111/tpj.12959 PubMedGoogle Scholar
  27. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A (2006) Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci USA 103(19):7518–7523CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nirmala J, Dahl S, Steffenson BJ, Kannangara CG, von Wettstein D, Chen X, Kleinhofs A (2007) Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proc Natl Acad Sci USA 104(24):10276–10281CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nirmala J, Drader T, Chen X, Steffenson B, Kleinhofs A (2010) Stem rust spores elicit rapid RPG1 phosphorylation. Mol Plant Microbe Interact 23(12):1635–1642CrossRefPubMedGoogle Scholar
  30. Nirmala J, Drader T, Lawrence P, Yin C, Hulbert S, Steber C, Steffenson B, Szabo L, von Wettstein D, Kleinhofs A (2011) Concerted action of two avirulent spore effectors activate reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci USA 108(35):14676–14681CrossRefPubMedPubMedCentralGoogle Scholar
  31. Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046CrossRefPubMedPubMedCentralGoogle Scholar
  32. Raizis AM, Ferguson MM, George PM (2000) Effect of nonsense mutations on PTEN mRNA stability. Hum Genet 107:24–27CrossRefPubMedGoogle Scholar
  33. Rostoks N, Zale JM, Soule J, Brueggeman R, Druka A, Kudrna D, Steffenson B, Kleinhofs A (2002) A barley gene family homologous to the maize rust resistance gene Rp1-D. Theor Appl Genet 104:1298–1306CrossRefPubMedGoogle Scholar
  34. Rostoks N, Steffenson BJ, Kleinhofs A (2004) Structure and expression of the barley stem rust resistance gene Rpg1 messenger RNA. Physiol Mol Plant Pathol 64(2):91–101CrossRefGoogle Scholar
  35. Salmeron JM, Barker SJ, Carland FM, Mehta AY, Staskawicz BJ (1994) Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6(3):511–520CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15(3):732–744CrossRefPubMedPubMedCentralGoogle Scholar
  37. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2010) The emergence of ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Plant Pathol 49:465–481Google Scholar
  38. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis var. tritici. USDA-ARS Bulletin E617Google Scholar
  39. Staples RC (2003) A novel gene for rust resistance. Trends Plant Sci 8:149–151CrossRefPubMedGoogle Scholar
  40. Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167CrossRefGoogle Scholar
  41. Steffenson BJ, Miller JD, Jin Y (1993) Detection of stem rust resistance gene Rpg1 in barley seedlings. Plant Dis 77:626–629CrossRefGoogle Scholar
  42. Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y (2009) Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99(10):1135–1141CrossRefPubMedGoogle Scholar
  43. Sun YL, Steffenson BJ, Jin Y (1996) Genetics of resistance to Puccinia graminis f. sp. secalis in barley line Q21861. Phytopathology 86:1299–1302CrossRefGoogle Scholar
  44. Torp J, Jørgensen JH (1986) Modification of barley powdery mildew resistance gene Ml-a12 by induced mutation. Can J Genet Cytol 28(5):725–731CrossRefGoogle Scholar
  45. Varshney R, Marcel T, Ramsay L, Russell J, Röder M, Stein N, Waugh R, Langridge P, Niks R, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 11:1091–1103CrossRefGoogle Scholar
  46. Warren RF, Merritt PM, Holub E, Innes RW (1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152(1):401–412PubMedPubMedCentralGoogle Scholar
  47. Zhang L, Fetch T, Nirmala J, Schmierer D, Brueggeman R, Steffenson B, Kleinhofs A (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113:847–855CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Upinder Gill
    • 1
    • 5
    Email author
  • Robert Brueggeman
    • 2
  • Jayaveeramuthu Nirmala
    • 1
    • 6
  • Yuan Chai
    • 3
  • Brian Steffenson
    • 3
  • Andris Kleinhofs
    • 1
    • 4
    Email author
  1. 1.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  2. 2.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  3. 3.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA
  4. 4.School of Molecular BiosciencesWashington State UniversityPullmanUSA
  5. 5.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  6. 6.Cereal Disease LaboratoryUSDA-ARSSaint PaulUSA

Personalised recommendations