Skip to main content
Log in

A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The indel in the promoter of CsHDZIV11 co-segregates with fruit spine density and could be used for molecular breeding in cucumber.

Abstract

Fruit spine density is an important quality trait for marketing in cucumber (Cucumis sativus L.). However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, we isolated a mutant, few spines 1 (fs1), from CNS2 (wild type, WT), a North China-type cucumber with a high density of fruit spines. Genetic analysis showed that fs1 was controlled by a single recessive Mendelian factor. Bulked segregant analysis combined with genome resequencing were used for mapping fs1 in the F2 population derived from a cross between the fs1 mutant and WT, and it was located on chromosome 6 through association analysis. To develop more polymorphic markers to locate fs1, another F2 population was constructed from the cross between fs1 and ‘Chinese long’ 9930. Then, fs1 was narrowed down to a 110.4-kb genomic region containing 25 annotated genes. A fragment substitution was identified in the promoter region of Csa6M514870 between fs1 and WT. This fragment in fs1 was also present in wild cucumber. Csa6M514870 encodes a PDF2-related protein, a homeodomain-leucine zipper IV transcription factor (CsHDZIV11/CsGL3) sharing high identity and similarity with proteins related to trichome formation or epidermal cell differentiation. Quantitative reverse-transcription PCR revealed a higher expression level of CsHDZIV11 in young fruits from fs1 compared to WT. A molecular marker based on this indel co-segregated with the spine density. This work provides a solid foundation not only for understanding the molecular mechanism of fruit spine density, but also for molecular breeding in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    Article  CAS  PubMed  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RH, Juenger TE, Symonds VV (2012) Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Mol Ecol 21:3501–3515

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RH, Lloyd AM, Symonds VV (2014) The genetic architecture of constitutive and induced trichome density in two new recombinant inbred line populations of Arabidopsis thaliana: phenotypic plasticity, epistasis, and bidirectional leaf damage response. BMC Plant Biol 14:220–222

    Article  Google Scholar 

  • Call AD, Wehner TC (2010) Gene list for cucumber. Cucurbit Genet Coop Rpt 33–34:69–103

    Google Scholar 

  • Cao C, Guo H (1999) The cucumber mutant with glabrous stem and leaves. China Veg 4:29 (in Chinese)

    Google Scholar 

  • Cao C, Zhang S, Guo H (2001) The genetic relationship between glabrous foliage character and warty fruit. Acta Hortic Sin 28:565–566 (in Chinese)

    Google Scholar 

  • Caruth TF (1975) A genetic study of the inheritance of rupturing carpel in fruit of cucumber, Cucumis sativus L. PhD dis., Texas A&M University, College Station

  • Chen C, Liu M, Jiang L, Liu X, Zhao J, Yan S, Yang S, Ren H, Liu R, Zhang X (2014) Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). J Exp Bot 65:4943–4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui JY, Miao H, Ding LH, Wehner TC, Liu PN, Wang Y, Zhang SP, Gu XF (2016) A new glabrous gene (csgl3) identified in trichome development in cucumber (Cucumis sativus L.). PLoS One 11:e0148422

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanourakis NE, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Floyd SK, Zalewski CS, Bowman JL (2006) Evolution of class III homeodomain-leucine zipper genes in streptophytes. Genetics 173:373–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu R, Liu W, Li Q, Li J, Wang L, Ren Z (2013) Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome 56:395–405

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P (2006) GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18:1383–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y, Liu C, Yu H, Broun P (2007) Integration of cytokinin and gibberellin signaling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134:2073–2081

    Article  CAS  PubMed  Google Scholar 

  • Grebe M (2012) The patterning of epidermal hairs in Arabidopsis—updated. Curr Opin Plant Biol 15:31–37

    Article  CAS  PubMed  Google Scholar 

  • Guan Y (2008) Mapping and cloning of related gene for fruit spines formation in cucumber. PhD thesis, Shanghai Jiao Tong University (in Chinese)

  • Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134:174–182

    Article  CAS  PubMed  Google Scholar 

  • Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, XuanZ Cao J, Asan WZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang QN, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  PubMed  Google Scholar 

  • Hülskamp M, Schnittger A, Folkers U (1999) Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int Rev Cytol 186:147–178

    Article  PubMed  Google Scholar 

  • Hutchins AE (1940) Inheritance in the cucumber. J Agric Res 60:117–128

    Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010) Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Khosla A, Paper JM, Boehler AP, Bradley AM, Neumann TR, Schrick K (2014) HD-Zip proteins GL2 and HDG11 have redundant functions in arabidopsis trichomes, and GL2 activates a positive feedback loop via MYB23. Plant Cell 26:2184–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wen C, Weng Y (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Cao C, Zhang C, Zheng S, Wang Z, Wang L, Ren Z (2015) The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene (Cucumis sativus L.). J Exp Bot 66:2515–2526

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Machado A, Wu Y, Yang Y, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Zhang SP, Wang XW, Zhang ZH, Li M, Mu SQ, Cheng ZC, Zhang RW, Huang SW, Xie BY, Fang ZY, Zhang ZX, Weng Y, Gu XF (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 172:167–176

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T (2006) Characterization of the class IV homeodomain-leucine zipper gene family in arabidopsis. Plant Physiol 141:1363–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa E, Yamada Y, Sezaki N, Kosaka S, Kondo H, Kamata N, Abe M, Komeda Y, Takahashi T (2015) ATML1 and PDF2 play a redundant and essential role in arabidopsis embryo development. Plant Cell Physiol 56:1183–1192

    Article  PubMed  Google Scholar 

  • Pan YP, Bo KL, Cheng ZH, Weng YQ (2015) The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol 15:1–15

    Article  CAS  Google Scholar 

  • Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front Plant Sci 5:259–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP, Aravind L (1999) START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci 24:130–132

    Article  CAS  PubMed  Google Scholar 

  • Poole CF (1944) Genetics of cultivated cucurbits. J Hered 35:122–128

    Google Scholar 

  • Prigge MJ, Clark SE (2006) Evolution of the class III HD-Zip gene family in land plants. Evol Dev 8:350–361

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8:1388–1399

    Article  CAS  PubMed  Google Scholar 

  • Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584

    Article  PubMed  Google Scholar 

  • Schena M, Davis RW (1992) HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89:3894–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrick K, Nguyen D, Karlowski WM, Mayer KF (2004) START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol 5:R41

    Article  PubMed  PubMed Central  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  CAS  PubMed  Google Scholar 

  • Shan CM, Shangguan XX, Zhao B, Zhang XF, Chao L, Yang CQ, Wang LJ, Zhu HY, Zeng YD, Guo WZ, Zhou BL, Hu GJ, Guan XY, Chen ZJ, Wendel JF, Zhang TZ, Chen XY (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada S, Takada N, Yoshida A (2013) ATML1 promotes epidermal cell differentiation in Arabidopsis shoots. Development 140:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Tkachenko NN (1935) Preliminary results of a genetic investigation of the cucumber, Cucumis sativus L. Bull Appl Plant Breed 9:311–356

    Google Scholar 

  • Vakalounakis DJ (1992) Heart leaf, a recessive leaf shape markers in cucumber: linkage with disease resistance and other traits. J Hered 83:217–220

    Google Scholar 

  • Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, Rogowsky PM (2009) The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J 59:883–894

    Article  CAS  PubMed  Google Scholar 

  • Walford SA, Wu Y, Llewellyn DJ, Dennis ES (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 7:464–478

    Google Scholar 

  • Walters SA, Shetty NV, Wehner TC (2001) Segregation and linkage of several genes in cucumber. J Am Soc Hortic Sci 126:442–450

    CAS  Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber myb gene. Plant Cell 16:2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YL, Nie JT, Chen HM, Guo CL, Pan J, He HL, Pan JS, Cai R (2016) Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theor Appl Genet 192:305–316

    Article  Google Scholar 

  • Xue XY, Zhao B, Chao LM, Chen DY, Cui WR, Mao YB, Wang LJ, Chen XY (2014) Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLoS Genet 10:e1004266

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Chung MC, Tu CY, Leu WM (2002) OSTF1: a HD-GL2 family homeobox gene is developmentally regulated during early embryogenesis in rice. Plant Cell Physiol 43:628–638

    Article  CAS  PubMed  Google Scholar 

  • Yang CX, Li HX, Zhang JH, Luo ZD, Gong PJ, Zhang CJ, Li JH, Wang TT, Zhang YY, Lu YE, Ye ZB (2011) A regulatory gene induces trichome formation and embryo lethality in tomato. Proc Natl Acad Sci USA 108:11836–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Chung MC, Tu CY, and Leu WM (2002) OSTF1: a HD-GL2 family homeobox gene is developmentally regulated during early embryogenesis in rice. Plant Cell Physiol 43: 628–638  Yang XQ, Zhang WW, He HL, Bie BB, Zhao JL, Ren GL, Li Y, Zhang DB, Pan JS, Cai R (2014) Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). Plant J 78:1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, Li Z, He LH, Zhang C, Si LT, Zhu LH (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Zhang F, Zuo K, Zhang J, Liu X, Zhang L, Sun X, Tang K (2010a) An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J Exp Bot 61:3599–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, He H, Guan Y, Du H, Yuan LH, Li Z, Yao DQ, Pan JS, Cai R (2010b) Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Genet 120:645–654

    Article  CAS  PubMed  Google Scholar 

  • Zhao JL, Pan JS, Guan Y, Zhang WW, Bie BB, Wang YL, He HL, Lian HL, Cai R (2015) Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. J Integr Plant Biol 57:925–935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sanwen Huang (Institute of Vegetables and Flowers of the Chinese Academy of Agricultural Sciences) for providing wild cucumber (C. sativus var. hardwickii). This work was supported by funding from the National Natural Science Foundation of China (NSFC: 31222048 to Z. Ren and 31401894 to L. Wang), the Natural Science Foundation of Shandong Province (JQ201309), the ‘Taishan Scholar’ Foundation of the People’s Government of Shandong Province, the Program for Changjiang Scholars and Innovative Research Team in University (IRT1155), and the Henry Fok Education Foundation (131032).

Conflict of interest

The authors declare competing financial interests: the authors (Z.R., H.Z., C.C., L.W., and Q.L., on behalf of Shandong Agricultural University) have filed a molecular marker patent application based in part on this work with the China State Intellectual Property Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghai Ren.

Additional information

Communicated by S. Huang.

H. Zhang and L. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (XLSX 27049 kb)

Supplementary Figures and Tables (DOCX 6368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, L., Zheng, S. et al. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.). Theor Appl Genet 129, 1289–1301 (2016). https://doi.org/10.1007/s00122-016-2703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2703-5

Keywords

Navigation