Theoretical and Applied Genetics

, Volume 129, Issue 5, pp 935–943 | Cite as

Genetic mapping with an inbred line-derived F2 population in potato

  • Jeffrey B. Endelman
  • Shelley H. Jansky
Original Article


Key message

This is the first report of the production and use of a diploid inbred line-based F2 population for genetic mapping in potato.


Potato (Solanum tuberosum L.) is an important global food crop, for which tetrasomic inheritance and self-incompatibility have limited both genetic discovery and breeding gains. We report here on the creation of the first diploid inbred line-derived F2 population in potato, and demonstrate its utility for genetic mapping. To create the population, the doubled monoploid potato DM1-3 was crossed as a female to M6, an S7 inbred line derived from the wild relative S. chacoense, and a single F1 plant was then self-pollinated. A genetic linkage map with 2264 single nucleotide polymorphisms was constructed and used to improve the physical anchoring of superscaffolds in the potato reference genome, which is based on DM1-3. Segregation was observed for skin and flesh color, skin and flesh pigment intensity, tuber shape, anther development, jelly end, and the presence of eye tubers instead of normal sprouts. Using the R/qtl software, we detected 10 genes, 7 of which have been previously mapped and 3 for which this is the first publication. The latter category includes tightly linked genes for the jelly end and eye tuber traits on chromosome 5. The development of recombinant inbred lines from this F2 population by single-seed descent is underway and should facilitate even better resolution of these and other loci.


Flesh Color Binary Trait Carotenoid Cleavage Dioxygenase Yellow Flesh Potato Genome Sequencing Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the contributions made by David Douches (Michigan State University), who provided SNP data; Grace Christensen, who extracted DNA for SNP genotyping; Andy Hamernik, who was responsible for the greenhouse and field trials; and Xiaoxi Liu (Ohio State University), who scored tuber shape in 2014. This project was supported by USDA NIFA 2014-67013-22434.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

122_2016_2673_MOESM1_ESM.pdf (4.3 mb)
Supplementary material 1 (PDF 4414 kb)
122_2016_2673_MOESM2_ESM.csv (5 kb)
Supplementary material 2 (CSV 5 kb)
122_2016_2673_MOESM3_ESM.xlsx (1.5 mb)
Supplementary material 3 (XLSX 1523 kb)


  1. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedPubMedCentralGoogle Scholar
  3. Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211CrossRefPubMedGoogle Scholar
  4. Broman K, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinform 19:889–890CrossRefGoogle Scholar
  5. Brown C, Kim T, Ganga Z, Haynes K, De Jong D, Jahn M, Paran I, De Jong W (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372CrossRefGoogle Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  7. Cipar MS, Peloquin SJ, Hougas RW (1964) Variability in the expression of self-incompatibility in tuber-bearing diploid Solanum species. Am Potato J 41:155–162CrossRefGoogle Scholar
  8. De Jong H (1987) Inheritance of pigmented tuber flesh in cultivated diploid potatoes. Am Potato J 64:337–343CrossRefGoogle Scholar
  9. De Jong H (1991) Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. Am Potato J 68:585–593CrossRefGoogle Scholar
  10. De Jong H, Burns VJ (1993) Inheritance of tuber shape in cultivated diploid potatoes. Am Potato J 70:267–283CrossRefGoogle Scholar
  11. Dodds KS, Long DH (1956) The inheritance of colour in diploid potatoes II. A three-factor linkage group. J Genet 54:27–41CrossRefGoogle Scholar
  12. Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE, Buell CR, Douches DS (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS ONE 7:e36347CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75CrossRefPubMedGoogle Scholar
  14. Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57CrossRefPubMedGoogle Scholar
  15. Grun P, Aubertin M, Radlow M (1962) Multiple differentiation of plasmons of diploid species of Solanum. Genetics 47:1321–1333PubMedPubMedCentralGoogle Scholar
  16. Hackett CA, Luo ZA (2003) TetraploidMap: construction of a linkage map in autotetraploid species. J Hered 94:358–359CrossRefPubMedGoogle Scholar
  17. Hackett CA, Bradshaw JE, McNicol JW (2001) Interval mapping of QTLs in autotetraploid species. Genetics 159:1819–1832PubMedPubMedCentralGoogle Scholar
  18. Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, De Jong WS, Douches DS, Buell CR (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genom 12:302CrossRefGoogle Scholar
  19. Hanneman RE (1985) Self fertility in Solanum chacoense. Am Potato J 62:428–429Google Scholar
  20. Hanneman RE, Peloquin SJ (1981) Genetic-cytoplasmic male sterility in progeny of 4x-2x crosses in cultivated potatoes. Theor Appl Genet 59:53–55PubMedGoogle Scholar
  21. Jansky SH, Chung YS, Kittipadukal P (2014) M6: a diploid potato inbred line for use in breeding and genetics research. J Plant Regist 8:195–199CrossRefGoogle Scholar
  22. Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, De Jong WS (2005) The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theor Appl Genet 110:269–275CrossRefPubMedGoogle Scholar
  23. Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, Kim TS, De Jong WS (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120:45–57CrossRefPubMedPubMedCentralGoogle Scholar
  24. Koopmans A (1959) Changes in sex in the flowers of the hybrid Solanum rybinii x S. chacoense. IV. Further data from reciprocal cross S. chacoense x S. rybinii. Genetica 30:384–390CrossRefPubMedGoogle Scholar
  25. Li XQ, De Jong H, De Jong DM, De Jong WS (2005) Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theor Appl Genet 110:1068–1073CrossRefPubMedGoogle Scholar
  26. Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312CrossRefGoogle Scholar
  27. Liu BH (2002) Statistical genomics. CRC Press, Boca RatonGoogle Scholar
  28. Luo ZW, Zhang RM, Kearsey MJ (2004) Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Natl Acad Sci USA 101:7040–7045CrossRefPubMedPubMedCentralGoogle Scholar
  29. Luo ZW, Zhang Z, Leach L, Zhang RM, Bradshaw JE, Kearsey MJ (2006) Constructing genetic linkage maps under a tetrasomic model. Genetics 172:2635–2645CrossRefPubMedPubMedCentralGoogle Scholar
  30. M’Ribu HK, Veilleux RE (1990) Effect of genotype, explant, subculture interval and environmental conditions on regeneartion of shoots from in vitro monoploids of a diploid potato species, Solanum phureja Juz. & Buk. Plant Cell Tissue Organ Cult 23:171–179Google Scholar
  31. Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250CrossRefGoogle Scholar
  32. Massa AN, Manrique-Carpintero NC, Coombs JJ, Zarka DG, Boone AE, Kirk WW, Hackett CA, Bryan GJ, Douches DS (2015) Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.) G3 (Bethesda) 5:2357–2364Google Scholar
  33. Mather K (1936) Segregation and linkage in autotetraploids. J Genet 32:287–314CrossRefGoogle Scholar
  34. Pandey KK (1962) Interspecific incompatibility in Solanum species. Am J Bot 49:874–882CrossRefGoogle Scholar
  35. Pasare SA, Ducreux LJM, Morris WL, Campell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198:1108–1120CrossRefPubMedGoogle Scholar
  36. Paz M, Veilleux R (1999) Infuence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breed 118:53–57CrossRefGoogle Scholar
  37. Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K (2005) Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 48:977–984CrossRefPubMedGoogle Scholar
  38. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–197CrossRefGoogle Scholar
  39. Prashar A, Hornyik C, Young V, McLean K, Sharma SK, Dale MFB, Bryan GJ (2014) Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor Appl Genet 127:2159–2171CrossRefPubMedGoogle Scholar
  40. Pushkarnath P (1942) Studies on sterility in potatoes. 1. The genetics of self- and cross-incompatibilities. Indian J Genet Plant Breed 2:11–36Google Scholar
  41. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  42. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286CrossRefGoogle Scholar
  43. Salaman RN (1910) The inheritance of colour and other characters in the potato. J Genet 1:7–46CrossRefGoogle Scholar
  44. Sharma SK, Bolser D, de Boer J, Sønderkaer M, Amoros W, Carboni MF, D’Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, Eguiluz M, Guo X, Guzman F, Hackett CA, Hamilton JP, Li G, Li Y, Lozano R, Maass A, Marshall D, Martinez D, McLean K, Mejía N, Milne L, Munive S, Nagy I, Ponce O, Ramirez M, Simon R, Thomson SJ, Torres Y, Waugh R, Zhang Z, Huang S, Visser RGF, Bachem CWB, Sagredo B, Feingold SE, Orjeda G, Veilleux RE, Bonierbale M, Jacobs JME, Milbourne D, Martin DMA, Bryan GJ (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 (Bethesda) 3:2031–2047Google Scholar
  45. Sowokinos JR, Shock CC, Stieber TD, Eldredge EP (2000) Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes. Am J Potato Res 77:47–56CrossRefGoogle Scholar
  46. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744CrossRefGoogle Scholar
  47. Thompson AL, Love SL, Sowokinos JR, Thornton MK, Shock CC (2008) Review of the sugar end disorder in potato (Solanum tuberosum, L.). Am J Potato Res 85:375–386CrossRefGoogle Scholar
  48. van Eck HJ, Jacobs JME, Stam P, Ton J, Stiekema WJ, Jacobsen E (1994) Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137:303–309PubMedGoogle Scholar
  49. van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40CrossRefPubMedGoogle Scholar
  50. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, De Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort J, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RGF, Bakker J, van Eck HJ (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087CrossRefPubMedPubMedCentralGoogle Scholar
  51. Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622CrossRefPubMedGoogle Scholar
  52. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang Y, Jung CS, De Jong WS (2009a) Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet 119:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang Y, Cheng S, De Jong D, Griffiths H, Halitschke R, De Jong W (2009b) The potato R locus codes for dihydroflavonol 4-reductase. Theor Appl Genet 119:931–937CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of HorticultureUniversity of WisconsinMadisonUSA
  2. 2.USDA Agricultural Research ServiceMadisonUSA

Personalised recommendations