Theoretical and Applied Genetics

, Volume 129, Issue 3, pp 547–561 | Cite as

The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation

  • Mercy Kitavi
  • Tim Downing
  • Jim Lorenzen
  • Deborah Karamura
  • Margaret Onyango
  • Moses Nyine
  • Morag Ferguson
  • Charles Spillane
Original Article

Abstract

Key message

All East African Highland Banana varieties are genetically uniform having arisen from a single clone introduced to Africa.

Abstract

East African Highland bananas (EAHBs) are a subgroup of triploid (AAA genome) bananas of importance to food security in the Great Lakes region of Africa. Little is known about their genetic variation, population structure and evolutionary history. Ninety phenotypically diverse EAHB cultivars were genotyped at 100 SSR microsatellite markers to investigate population genetic diversity, the correlation of genetic variability with morphological classes, and evolutionary origins since introduction to Africa. Population-level statistics were compared to those for plantain (AAB) and dessert (AAA) cultivars representing other M. acuminata subgroups. EAHBs displayed minimal genetic variation and are largely genetically uniform, irrespective of whether they were derived from the distinct Ugandan or Kenyan germplasm collections. No association was observed between EAHB genetic diversity and currently employed morphological taxonomic systems for EAHB germplasm. Population size dynamics indicated that triploid EAHBs arose as a single hybridization event, which generated a genetic bottleneck during foundation of the EAHB genepool. As EAHB triploids are sterile, subsequent asexual vegetative propagation of EAHBs allowed a recent rapid expansion in population size. This provided a basis for emergence of genetically near-isogenic somatic mutants selected across farmers and environments in East Africa over the past 2000 years since EAHBs were first introduced to the African continent.

Keywords

Germplasm Collection Polymorphic Information Content Principal Coordinate Analysis Great Lake Region Bayesian Skyline Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was conducted at Biosciences Eastern and Central Africa (BecA)-ILRI and in the Genetics and Biotechnology Lab at the Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway. We thank Dr Kassa Semagn for his invaluable help in data analysis. This research was supported by funding from Irish Aid and the International Institute for Tropical Agriculture (IITA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2015_2647_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 113 kb)
122_2015_2647_MOESM2_ESM.pdf (100 kb)
Supplementary material 2 (PDF 99 kb)
122_2015_2647_MOESM3_ESM.pdf (121 kb)
Supplementary material 3 (PDF 121 kb)
122_2015_2647_MOESM4_ESM.pdf (134 kb)
Supplementary material 4 (PDF 134 kb)
122_2015_2647_MOESM5_ESM.pdf (162 kb)
Supplementary material 5 (PDF 161 kb)
122_2015_2647_MOESM6_ESM.pdf (125 kb)
Supplementary material 6 (PDF 124 kb)

References

  1. Abdullah NAP, Bin Saleh G, Putra ETS, Bin Wahab Z (2012) Genetic relationship among Musa genotypes revealed by microsatellite markers. Afr J Biotechnol 11(26):6769–6776Google Scholar
  2. Amos W, Hoffman JIW (2010) Evidence that two main bottleneck events shaped modern human genetic diversity. Proc Biol Sci 277(1678):131–137PubMedCentralCrossRefPubMedGoogle Scholar
  3. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331PubMedCentralPubMedGoogle Scholar
  4. Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2):255–265CrossRefPubMedGoogle Scholar
  5. Butler D (2013) Fungus threatens top banana: fears rise for Latin American industry as devastating disease hits leading variety in Africa and Middle East. Nature 504:195–196CrossRefPubMedGoogle Scholar
  6. Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3:311–317CrossRefPubMedGoogle Scholar
  7. Buwa R (2009) Using SSR markers to fingerprint the East African Highland banana cultivars. M.Sc., Makerere UniversityGoogle Scholar
  8. Changadeya W, Kaunda E, Ambali AJD (2012) Molecular characterization of Musa cultivars in Malawi using SSR. Afr J Biotechnol 11(18):4140–4157Google Scholar
  9. Christelova P, Valarik M, Hribova E, Van den Houwe I, Channeliere S, Roux N, Dolezel J (2011) A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants 2011:plr024PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cooper H, Spillane C, Hodgkin T (2000) Broadening the genetic bases of crop production. IPGRI, FAO, CABI, Rome (Italy), Wallingford (UK)Google Scholar
  11. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  12. Crane MB, Lawrence WJC (1956) The genetics of garden plants, 4th edn. Macmillan, LondonGoogle Scholar
  13. Creste S, Neto AT, de Oliveira Silva S, Figueira A (2003) Genetic characterization of banana cultivars (Musa spp.) from Brazil using microsatellite markers. Euphytica 132:259–268CrossRefGoogle Scholar
  14. Crouch JH, Vuylsteke D, Ortiz R (1997) Microsatellite markers for molecular breeding of Musa. InfoMusa 6(1):5–6Google Scholar
  15. de Jesus ON, Silva Sde O, Amorim EP, Ferreira CF, de Campos JM, Silva Gde G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13:41PubMedCentralCrossRefPubMedGoogle Scholar
  16. De Langhe E (1961) La taxonomie du bananier plantain en Afrique Équatoriale. Journal d'agriculture tropicale et de botanique appliquée 8:417–449CrossRefGoogle Scholar
  17. De Langhe EA (1964) The origin of variation in the plantain banana. Mededelingen van de Landbouwhogeschool en de Opzoekingsstations van de Staat te Gent 39:45–80Google Scholar
  18. DeGiorgio M, Degnan JH, Rosenberg NA (2011) Coalescence-time distributions in a serial founder model of human evolutionary history. Genetics 189(2):579–593PubMedCentralCrossRefPubMedGoogle Scholar
  19. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  20. D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217CrossRefPubMedGoogle Scholar
  21. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91(8):3166–3170PubMedCentralCrossRefPubMedGoogle Scholar
  22. Drummond AJ (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22(5):1185–1192CrossRefPubMedGoogle Scholar
  23. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralCrossRefPubMedGoogle Scholar
  24. Earl DA (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  25. El-Khishin D, Belatus EL, El-Hamid AA, Radwan KH (2009) Molecular characterization of banana cultivars (Musa spp.) from Egypt using AFLP. Res J Agric Biol Sci 5(3):272–279Google Scholar
  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620CrossRefPubMedGoogle Scholar
  27. Falush D, Stephens S, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCentralCrossRefPubMedGoogle Scholar
  28. Fu Y-X, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150:487–497PubMedCentralPubMedGoogle Scholar
  29. Galov A, Byrne K, Gomerčić T, Duras M, Arbanasić H, Sindičić M, Mihelić D, Kovačić A, Funk SM (2013) Genetic structure and admixture between the Posavina and Croatian coldblood in contrast to the Lippizan horse from Croatia. Czech J Anim Sci 58(2):71–78Google Scholar
  30. Ganapathy KN, Gomashe SS, Rakshit S, Prabhakar B, Ambekar SS, Ghorade RB, Biradar BD, Saxena U, Patil JV (2012) Genetic diversity revealed utility of SSR markers in classifying parental lines and elite genotypes of sorghum (Sorghum bicolor L. Moench.). Aust J Crop Sci 6(11):1486–1493Google Scholar
  31. García-Bastidas F, Ordóñez N, Konkol J, Al-Qasim M, Naser Z, Abdelwali M, Salem N, Ploetz RC, Kema GHJ (2014) First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Disease 98:694CrossRefGoogle Scholar
  32. Gebremedhin B, Ficetola GF, Naderi S, Rezaei HR, Maudet C, Rioux D, Luikart G, Flagstad Ø, Thuiller W, Taberlet P (2009) Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex. Anim Conserv 12(2):89–100CrossRefGoogle Scholar
  33. Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139(1):463–471PubMedCentralPubMedGoogle Scholar
  34. Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMedCentralCrossRefPubMedGoogle Scholar
  35. Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100(5):1073–1084PubMedCentralCrossRefPubMedGoogle Scholar
  36. Hippolyte I, Bakry F, Seguin M, Gardes L, Rivallan R, Risterucci AM, Jenny C, Perrier X, Carreel F, Argout X et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65PubMedCentralCrossRefPubMedGoogle Scholar
  37. Hippolyte I, Jenny C, Gardes L, Bakry F, Rivallan R, Pomies V, Cubry P, Tomekpe K, Risterucci AM, Roux N et al (2012) Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109(5):937–951PubMedCentralCrossRefPubMedGoogle Scholar
  38. Hoban S, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation -based study. Mol Ecol 22:3444–3450CrossRefPubMedGoogle Scholar
  39. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267CrossRefPubMedGoogle Scholar
  40. Karamura D (1998) Numerical taxonomic studies of the East African highland bananas (Musa AAA- East Africa) in Uganda. Doctor of Philosophy, PGRI, ReadingGoogle Scholar
  41. Kennedy J (2008) Pacific Bananas: complex origins, multiple dispersals? Asian Perspect 47:75–94CrossRefGoogle Scholar
  42. Lewontin R (1972) The apportionment of human diversity. Evol Biol 6:381–398CrossRefGoogle Scholar
  43. Li L, Wang HY, Zhang C, Wang XF, Shi FX, Chen WN, Ge XJ (2013) Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One 8(11):e80502PubMedCentralCrossRefPubMedGoogle Scholar
  44. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform Appl Note 21(9):2128–2129CrossRefGoogle Scholar
  45. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Am Genet Assoc 89(3):238–247Google Scholar
  46. Mace E, Buhariwalla K, Buhariwalla H, Crouch J (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459–460CrossRefGoogle Scholar
  47. Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77PubMedCentralCrossRefPubMedGoogle Scholar
  48. Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8(6):e67350PubMedCentralCrossRefPubMedGoogle Scholar
  49. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111(3):675–689PubMedCentralPubMedGoogle Scholar
  50. Mbanjo EGN, Tchoumbougnang F, Mouelle AS, Oben JE, Nyine M, Dochez C, Ferguson ME, Lorenzen J (2012) Development of expressed sequence tags-simple sequence repeats (EST-SSRs) for Musa and their applicability in authentication of a Musa breeding population. Afr J Biotechnol 11(71):13546–13559Google Scholar
  51. McEachern MB, Van Vuren DH, Floyd CH, May B, Eadie JM (2011) Bottleneck and rescue effects in fluctuating population of golden mantle ground squirrels. Conserv Genet 12:285–296CrossRefGoogle Scholar
  52. Miller M, Haig SM, Mullins Thomas D, Poppe KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the Yellow Rail. The Condor 114(1):100–112CrossRefGoogle Scholar
  53. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCentralCrossRefPubMedGoogle Scholar
  54. Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B 11(5):332–341PubMedCentralCrossRefPubMedGoogle Scholar
  55. Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32(1):158–169CrossRefPubMedGoogle Scholar
  56. Pachuau L, Atom AD, Thangjam R (2014) Genome classification of Musa cultivars from northeast India as revealed by ITS and IRAP markers. Appl Biochem Biotechnol 172(8):3939–3948CrossRefPubMedGoogle Scholar
  57. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539PubMedCentralCrossRefPubMedGoogle Scholar
  58. Perrier X, Bakry F, Carreel F, Jenny C, Horry JP, Lebot V, Hippolyte I (2009) Combining biological approaches to shed light on evolution of edible bananas. Ethnobot Res Appl 7:199–216Google Scholar
  59. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C et al (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci 108(28):11311–11318PubMedCentralCrossRefPubMedGoogle Scholar
  60. Pillay M, Ogundiwin E, Nwakanma D, Ude G, Tenkouano A (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102(6–7):965–970CrossRefGoogle Scholar
  61. Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503CrossRefGoogle Scholar
  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedCentralPubMedGoogle Scholar
  63. Resmi L, Kumari R, Bhat KV, Nair AS (2011) Molecular Characterization of genetic diversity and structure in South Indian Musa cultivars. Int J Bot 7(4):274–282CrossRefGoogle Scholar
  64. Sainudiin R, Durrett RT, Aquadro CF, Nielsen R (2004) Microsatellite mutation models: insights from a comparison of humans and chimpanzees. Genetics 168:383–395PubMedCentralCrossRefPubMedGoogle Scholar
  65. Scarcelli N, Marie Couderc M, Baco MN, Egah J, Vigouroux Y (2013) Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata). BMC Plant Biol 13:178PubMedCentralCrossRefPubMedGoogle Scholar
  66. Schoebel CN, Stewart J, Gruenwald NJ, Rigling D, Prospero S (2014) Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS One 9(1):e85368PubMedCentralCrossRefPubMedGoogle Scholar
  67. Shaibu AA (2012) Genetic diversity analysis of Musa species using amplified fragment length polymorphism and multivariate statistical technique. Int J Biochem Biotechnol 1(6):175–178Google Scholar
  68. Shepherd K (1957) Banana cultivars in East Africa. Trop Agric 34:277–286Google Scholar
  69. Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Lond Bot 55(359):302–312CrossRefGoogle Scholar
  70. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  71. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9(10):1517–1528CrossRefPubMedGoogle Scholar
  72. Ssebuliba RN, Rubaihayo R, Tenkouano A, Makumbi D, Talegera D, Magambo M (2005) Genetic diversity among East African Highland bananas for female fertility. Afr Crop Sci J 13(1):13–26Google Scholar
  73. Till BJ, Jankowicz-Cieslak J, Sagi L, Huynh OA, Utsushi H, Swennen R, Terauchi R, Mba C (2010) Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor Appl Genet 121(7):1381–1389PubMedCentralCrossRefPubMedGoogle Scholar
  74. Tugume AK, Lubega GW, Rubaihayo PR (2003) Genetic diversity of East African Highland bananas using AFLP. Infomusa 11(2):28–32Google Scholar
  75. Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107(2):248–255CrossRefPubMedGoogle Scholar
  76. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414PubMedCentralCrossRefPubMedGoogle Scholar
  77. Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour 8(4):725–735CrossRefPubMedGoogle Scholar
  78. Wu CH, Drummond AJ (2011) Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 188(1):151–164PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, C306 Aras de BrunNational University of Ireland GalwayGalwayIreland
  2. 2.International Institute for Tropical Agriculture (IITA)Biosciences Eastern and Central Africa (BecA-ILRI)NairobiKenya
  3. 3.School of Mathematics, Statistics and Applied MathematicsNational University of Ireland GalwayGalwayIreland
  4. 4.Bill and Melinda Gates FoundationSeattleUSA
  5. 5.Bioversity InternationalKampalaUganda
  6. 6.Kenya Agricultural Research Institute (KARI), KARI, Kisii CentreKisiiKenya

Personalised recommendations