Advertisement

Theoretical and Applied Genetics

, Volume 128, Issue 8, pp 1531–1540 | Cite as

Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

  • Caijiao Zhai
  • Peng Xu
  • Xia Zhang
  • Qi Guo
  • Xianggui Zhang
  • Zhenzhen Xu
  • Xinlian ShenEmail author
Original Paper

Abstract

Key Message

We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level.

Abstract

To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Keywords

Recombination Event Microsatellite Repeat BC2F1 Population Cotton Genome Fiber Quality Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant Numbers 31471545, 31171595), the Jiangsu Independent Innovation Funds of Agricultural Technology [Grant Number CX (14)2065] and Jiangsu Collaborative Innovation Center for Modern Crop Production.

Conflict of interest

The authors declare that there are no conflicts of interest in the reported research.

Ethical standard

The authors note that this research was performed and reported in accordance with the ethical standards of scientific conduct.

Supplementary material

122_2015_2528_MOESM1_ESM.xls (24 kb)
Supplementary material 1 (XLS 24 kb)
122_2015_2528_MOESM2_ESM.xlsx (461 kb)
Supplementary material 2 (XLSX 460 kb)
122_2015_2528_MOESM3_ESM.xlsx (2.7 mb)
Supplementary material 3 (XLSX 2771 kb)

References

  1. Benbouza H, Lacape JM, Jacquemin JM, Courtois B, Diouf FBH, Sarr D, Konan N, Baudoin JP, Mergeai G (2010) Introgression of the low-gossypol seed and high-gossypol plant trait in upland cotton: analysis of [(Gossypium hirsutum × G. raimondii)2 × G. sturtianum] trispecific hybrid and selected derivatives using mapped SSRs. Mol Breeding 25:273–286CrossRefGoogle Scholar
  2. Chen Y, Wang YY, Wang K, Zhu XF, Guo WZ, Zhang TZ, Zhou BL (2014) Construction of a complete set of alien chromosome addition lines from Gossypium austral in Gossypium hirsutum: morphological, cytological, and genotypic characterization. Theor Appl Genet 127:1105–1121PubMedCentralPubMedCrossRefGoogle Scholar
  3. Culp TW, Harrell DC (1973) Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L). Crop Sci 13:686–689CrossRefGoogle Scholar
  4. Culp TW, Harrell DC, Kerr T (1979) Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Sci 19:481–484CrossRefGoogle Scholar
  5. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvacea). Rheedea 2(2):108–165Google Scholar
  6. Ganesh SN, Vivek PC, Subhash SM, Ashok SJ (2013) Interspecific hybridization in Gossypium L.: characterization of progenies with different ploidy-confirmed multigenomic backgrounds. Plant Breeding 132:211–216CrossRefGoogle Scholar
  7. Guo WZ, Wang W, Zhou BL, Zhang TZ (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112(2006):1573–1581PubMedCrossRefGoogle Scholar
  8. Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541PubMedCentralPubMedCrossRefGoogle Scholar
  9. Katzer F, Lizundia R, Ngugi D, Blake D, McKeever D (2011) Construction of a genetic map for Theileria parva: identification of hotspots of recombination. Int J Parasitol 41:669–675PubMedCentralPubMedCrossRefGoogle Scholar
  10. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  11. Liharska T, Koornneef M, Wordragen MV, Kammen AV, Zabel P (1996) Tomato chromosome6: effect of alien chromosomal segments on recombination frequencies. Genome 39:485–491PubMedCrossRefGoogle Scholar
  12. Mehetre SS (2010) Wild Gossypium anomalum: a unique source of fibre fineness and strength-overview and achievements of pre-breeding efforts. Curr Sci 99:58–71Google Scholar
  13. Menzel MY, Brown MS (1955) Isolating mechanism in hybrids of Gossypium gossypioides. Am J Bot 42:49–57CrossRefGoogle Scholar
  14. Meyer VG (1973) Fertility restorer genes for cytoplasmic male sterility from Gossypium harknessii.In: Proceedings of beltwide cotton production research conference, p 65Google Scholar
  15. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127CrossRefGoogle Scholar
  16. Paterson AH, Boman RK, Brown SM, Chee P, Gannaway JR, Gingle AR, May OL, Smith CW (2004) Reducing the genetic vulnerability of cotton. Crop Sci 44:1900–1901CrossRefGoogle Scholar
  17. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu GJ, Lee T, Li JP, Lin LF, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang HB, Xu CM, Wang JP, Wang ZN, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang TZ, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang XY, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427PubMedCrossRefGoogle Scholar
  18. Phillips LL (1966) The cytology and phylogenetics of the diploid species of Gossypium. Amer J Bot 53:328–335CrossRefGoogle Scholar
  19. Qian SY, Huang JQ, Peng YJ, Zhou BL, Ying MC, Shen DZ, Hu TX, Xu YJ, Gu LM, Ni WC, Cheng S (1992) Studies on the hybrid of Gossypium hirsutum L. and G. anomalum and application in breeding. Sci Agricul Sin 25(6):44–51Google Scholar
  20. Rhyne CL (1958) Linkage studies in Gossypium.I. Altered recombination in allotetraploid G. hirsutum L. following linkage group transference from related diploid species. Genetics 43:822–883PubMedCentralPubMedGoogle Scholar
  21. Rhyne CL (1960) Linkage studies in Gossypium. II. Altered recombination values in a linkage group of allotetraploid G. hirsutum L. as a result of transferred diploid species genes. Genetics 45:673–681PubMedCentralPubMedGoogle Scholar
  22. Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. Genetics 10:258–259Google Scholar
  23. Silow RA (1941) The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J Genet 42:259–358CrossRefGoogle Scholar
  24. ur Rahman M, Zafar Y, Paterson AH (2009) Gossypium DNA markers: types, numbers, and uses. In: Paterson AH (ed) Genetics and genomics of cotton, plant genetics and genomics: crops and models 3. Springer science, LLC, New YorkGoogle Scholar
  25. Wang ZN, Zhang D, Wang XY, Tan X, Guo H, Paterson AH (2013) A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 3:1759–1767 Google Scholar
  26. Xiao J, Wu K, Fang DD, Stelly DM, Yu J, Cantrell RG (2009) New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci 13:75–157Google Scholar
  27. Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101PubMedCrossRefGoogle Scholar
  28. Zhang J, Wu YT, GuoWZ ZhangTZ (2000) Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sinica 12:267–269Google Scholar
  29. Zhang X, Zhai CJ, He LC, Guo Q, Zhang XG, Xu P, Su HM, Gong YY, Ni WC, Shen XL (2014) Morphological, cytological and molecular analyses of a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum. Crop J 2:272–277Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Caijiao Zhai
    • 1
    • 2
  • Peng Xu
    • 1
    • 2
  • Xia Zhang
    • 1
    • 2
  • Qi Guo
    • 1
    • 2
  • Xianggui Zhang
    • 1
    • 2
  • Zhenzhen Xu
    • 1
    • 2
  • Xinlian Shen
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Cotton and Rapeseed (Nanjing)Ministry of AgricultureNanjingPeople’s Republic of China
  2. 2.The Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China

Personalised recommendations