Skip to main content

Advertisement

Log in

Mapping a major QTL for malt extract of barley from a cross between TX9425 × Naso Nijo

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

One major QTL-controlling malt extract was identified on 2H, based on the data from four different environments and a large number of DH lines, determining 48 % of phenotypic variation. This QTL is of a high value for marker-assisted selection.

Abstract

Improving malting quality traits is one of the major breeding objectives for barley breeding programmes. Among different quality traits, malt extract is one of the most important, determining the yield of beer production. The use of molecular markers linked to loci affecting the quality traits can greatly improve selection efficiency. However, the discovery of closely linked markers relies on not only the availability of the loci, but the accuracy of phenotyping. In this experiment, 188 doubled-haploid lines derived from the cross between a Japanese malting barley and a Chinese feed barley were grown in four different environments (two sites × 2 years). Different quality traits were determined and used to map QTL for these traits. Several QTLs were identified for different quality traits. One major QTL-controlling malt extract was identified on 2H and determined 48 % of phenotypic variation with the closest marker of GBM1121. This QTL was consistently expressed in all four environments and is of a high value for marker-assisted selection in malting barley breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92. doi:10.1007/s11032-010-9415-3

    Article  Google Scholar 

  • Baghizadeh A, Taleei AR, Naghavi MR (2007) QTL analysis for some agronomic traits in barley (Hordeum vulgare L.). Int J Agric Biol 9:372–374

    Google Scholar 

  • Barr AR, Karakousis A, Lance RCM, Logue SJ, Manning S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Coventry SJ, Moody DB, Read BJ, Poulsen D, Li CD, Platz GJ, Inkerman PA, Panozzo JF, Cullis BR, Smith AB, Lim P, Langridge P (2003) Mapping and QTL analysis of the barley population Chebec × Harrington. Aust J Agric Res 54(12):1125–1130. doi:10.1071/AR02215

    Article  CAS  Google Scholar 

  • Bezant JH, Laurie DA, Pratchett N, Chojecki J, Kearsey MJ (1997) Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression. Plant Breed 116:141–145. doi:10.1111/j.1439-0523.1997.tb02168.x

    Article  CAS  Google Scholar 

  • Burger WC, LaBerge DE (1985) Malting and brewing quality. In: Rasmussen DC (ed) Barley. Agron Mono 26. ASA, CSSA, and SSSA, Madison, Wisconsin, pp 367–401

  • Cakir M, Poulsen DME, Galwey NW, Ablett GA, Chalmers KJ, Platz GJ, Park RF, Lance RCM, Panozzo JF, Read BJ, Moody DB, Barr AR, Johnston P, Li CD, Boyd WJR, Grime CR, Appels R, Jones MGK, Langridge A (2003) Mapping and QTL analysis of the barley population Tallon × Kaputar. Aust J Agric Res 54:1155–1162. doi:10.1071/AR02238

    Article  Google Scholar 

  • Carreck NL, Christian DG (1991) Studies on the patterns of nitrogen uptake and translocation to the grain of winter barley intended for malting. Ann Appl Biol 119:549–559. doi:10.1111/j.1744-7348.1991.tb04894.x

    Article  Google Scholar 

  • Chalmers KJ, Barua UM, Hackett CA, Thomas WTB, Waugh R, Powell W (1993) Identification of RAPD markers linked to genetic factors controlling the milling energy requirement of barley. Theor Appl Genet 87:314–320. doi:10.1007/BF01184917

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Zhou MX, Newman I, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162. doi:10.1071/FP06237

    Article  CAS  Google Scholar 

  • Chen GD, Li HB, Zheng Z, Wei YM, Zheng YL, McIntyre CL, Zhou MX, Liu CJ (2012) Characterization of a QTL affecting spike morphology on the long arm of chromosome 3H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor Appl Genet 125:1385–1392. doi:10.1007/s00122-012-1918-3

    Article  CAS  PubMed  Google Scholar 

  • Coles GD, Jamieson PD, Haslemore RM (1991) Effect of moisture stress on malting quality in triumph barley. J Cereal Sci 14:161–177. doi:10.1016/S0733-5210

    Article  Google Scholar 

  • Collins HM, Logue SJ, Jefferies SP, Barr AR (1999) Using QTL mapping to improve our understanding of malt extract. In: Proceedings of the 8th international barley genetics symposium University of Adelaide, Australia, pp 225–227

  • Coventry SJ, Collins HM, Barr AR, Jefferies SP, Chalmers KJ, Logue SJ, Langridge P (2003) Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L). Aust J Agric Res 54:1241–1250. doi:10.1071/AR02193

    Article  CAS  Google Scholar 

  • Elía M, Swanston JS, Moralejo M, Casas A, Pérez-Vendrell AM, Ciudad FJ, Thomas WTB, Smith PL, Ullrich SE, Molina-Cano JL (2010) A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph × Morex. Plant Breed 129:280–290. doi:10.1111/j.1439-0523.2009.01694.x

    Article  Google Scholar 

  • Emebiri LC, Moody DB, Panozzo JF, Read BJ (2004) Mapping of QTL for malting quality attributes in barley based on a cross of parents with low grain protein concentration. Field Crops Res 87:195–205. doi:10.1016/j.fcr.2003.11.002

    Article  Google Scholar 

  • European Brewery Convention (1998) ‘Analytica EBC’. Method 4.5. Congress Method. Fachverlag Hans Carl, Nurnberg, Germany

  • Fincher GB (2010) Biochemistry, physiology, and genetics of endosperm mobilization in germinated barley grain. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, pp 449–477

  • Foster AE, Peterson GA, Banasik OJ (1967) Heritability of factors affecting malting quality of barley. Crop Sci 7:611–613. doi:10.2135/cropsci1967.0011183X000700060016x

    Article  Google Scholar 

  • Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101. doi:10.1071/AR02237

    Article  CAS  Google Scholar 

  • Fox GP, Kelly AM, Cakir M, Bloustein G, Poulsen DME, Inkerman PA, Henry RJ (2006) Genetic impacts of the hull on barley grain quality. J Inst Brew 112:101–107. doi:10.1002/j.2050-0416.2006.tb00238.x

    Article  CAS  Google Scholar 

  • Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine mapping of a malting-quality QTL complex near the chromosome 4H S telomere in barley. Theor Appl Genet 109:750–760. doi:10.1007/s00122-004-1688-7

    Article  CAS  PubMed  Google Scholar 

  • Han F, Clancy JA, Jones BL, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Dissection of a malting quality QTL region on chromosome 1 (7H) of barley. Mol Breed 14:339–347. doi:10.1023/B:MOLB.0000049215.53864.e3

    Article  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North-American barley germ plasm. Theor Appl Genet 87:392–401. doi:10.1007/BF01184929

    Article  CAS  PubMed  Google Scholar 

  • Hayes P, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B, St. Pierre CA, Chen F (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. J Agric Genomics 2:1–9

    Google Scholar 

  • Hayter AM, Riggs TJ (1973) Environmental and varietal differences in diastatic power and four associated characteristics of spring barley. J Agric Sci 80:297–302. doi:10.1017/S0021859600057762

    Article  Google Scholar 

  • Hockett EA, Nilan RA (1985) Genetics. In: Rasmusson DC (ed) Barley. Am Soc Agron Madison, Wisconsin, pp 187–230

    Google Scholar 

  • Hoffman D, Dahleen L (2002) Markers polymorphic among malting barley (Hordeum vulgare L.) cultivars of a narrow gene pool associated with key QTLs. Theor Appl Genet 105:544–554. doi:10.1007/s00122-002-0954-9

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107:806–813. doi:10.1007/s00122-003-1342-9

    Article  CAS  PubMed  Google Scholar 

  • Kjar B, Jensen J, Giese H (1995) Quantitative trait loci for heading date and straw characters in barley. Genome 38:1098–1104. doi:10.1139/g95-146

    Article  Google Scholar 

  • Laidò G, Barabaschi D, Tondelli A, Gianinetti A, Stanca AM, LiDestriNicosia O, DiFonzo N, Francia E, Pecchioni N (2009) QTL alleles from a winter feed type can improve malting quality in barley. Plant Breed 128:598–605. doi:10.1111/j.1439-0523.2009.01636.x

    Article  Google Scholar 

  • Li HB, Zhou MX (2011) Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breed 27:479–490. doi:10.1007/s11032-010-9445-x

    Article  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363. doi:10.1007/s00122-004-1847-x

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910. doi:10.1007/s00122-008-0948-3

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American cultivars representing different germplasm groups. Theor Appl Genet 101:173–184. doi:10.1007/s001220051466

    Article  CAS  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mather DE, Tinker NA, Laberge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KK, Irvine RB, Falk DE (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37:544–554. doi:10.2135/cropsci1997.0011183X003700020039x

    Article  CAS  Google Scholar 

  • McFadden GL, Ahluwalia B, Clarke AE, Fincher GB (1988) Expression sites and developmental regulation of genes encoding (1-3,1-4)-/β-glucanases in germinated barley. Planta 173:500–508. doi:10.1007/BF00958963

    Article  CAS  PubMed  Google Scholar 

  • Morrall P, Briggs DE (1978) Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry 17:1495–1502. doi:10.1016/S0031-9422(00)94628-4

    Article  CAS  Google Scholar 

  • Oziel A, Hayes PM, Chen FQ, Jones B (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115:43–51. doi:10.1111/j.1439-0523.1996.tb00869.x

    Article  CAS  Google Scholar 

  • Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, Chalmers KJ, Lewis J, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Lance RCM, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Amagi Nijo × WI2585. Aust J Agric Res 54:1137–1140. doi:10.1071/AR02218

    Article  Google Scholar 

  • Pang JY, Zhou MX, Mendham NJ, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55:895–906. doi:10.1071/AR03097

    Article  Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. Aust J Agric Res 58:858–866. doi:10.1071/AR06203

    Article  CAS  Google Scholar 

  • Peterson GA, Foster EA (1973) Malting barley in the United States. Adv Agron 25:327–378. doi:10.1016/S0065-2113

    Article  CAS  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352. doi:10.1007/s00122-003-1253-9

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz Y, Standridge NN, Hockett EA, Wesenberg DM, Booth GD (1976) Effects of nitrogen fertilizer on malting quality of widely varying barley cultivars. Cereal Chem 53:574–585

    CAS  Google Scholar 

  • Powell W, Thomas WTB, Baird E, Lawrence P, Booth A, Harrower B, McNicol JW, Waugh R (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:48–59. doi:10.1038/hdy.1997.122

    Article  CAS  Google Scholar 

  • Rasmusson DC, Glass RL (1965) Effectiveness of early generation selection for four quality characters in barley. Crop Sci 5:389–391. doi:10.2135/cropsci1965.0011183X000500050003x

    Article  Google Scholar 

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427. doi:10.1007/s00122-009-0991-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Sparrow DHB (1970) Some genetical aspects of malting quality. In: RA Nilan (ed) Barley genetics II. Proceedings of the second international barley genetics symposium, Washington State University Press, Pullman, WA, USA, pp 559–574

  • Thomas WTB, Powell W, Swanston JS, Ellis RP, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Waugh R, Smith DB (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci 36:265–273. doi:10.2135/cropsci1996.0011183X003600020009x

    Article  Google Scholar 

  • Van Ooijen J, Kyazma B (2009) MapQTL® 6: software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103. doi:10.1007/s00122-007-0503-7

    Article  CAS  PubMed  Google Scholar 

  • Von Korff M, Wang H, Leon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93. doi:10.1007/s11032-007-9110-1

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  Google Scholar 

  • Wang J, Yang J, McNeil DL, Zhou MX (2010) Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica 3:331–342. doi:10.1007/s10681-010-0175-2

    Article  Google Scholar 

  • Wang J, Yang J, Jia Q, Zhu J, Shang Y, Hua W, Zhou M (2014) A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS One 2:e90144. doi:10.1371/journal.pone.0090144

    Article  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A highdensity consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206. doi:10.1186/1471-2164-7-206

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu R, Wang J, Li C, Johnson P, Lu CJ, Zhou MX (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One 7:e43079. doi:10.1371/journal.pone.0043079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XQ, Westcott S, Panozzo J, Cakir M, Harasymow S, Tarr A, Broughton S, Lance R, Li CD (2012) Comparative analysis of Australian and Canadian barleys for seed dormancy and malting quality. Euphytica 188:103–111. doi:10.1007/s10681-011-0576-x

    Article  CAS  Google Scholar 

  • Zhou MX (2011) Accurate phenotyping reveals better QTLs for waterlogging tolerance in barley. Plant Breed 130:203–208. doi:10.1111/j.1439-0523.2010.01792.x

    Article  CAS  Google Scholar 

  • Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley (Hordeum vulgare L.). Crop Sci 47:278–284. doi:10.2135/cropsci2006.02.0065

    Article  Google Scholar 

  • Zhou GF, Johnson P, Ryan PR, Delhaize E, Zhou MX (2012a) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed 29:427–436. doi:10.1007/s11032-011-9559-9

    Article  Google Scholar 

  • Zhou T, Takashi I, Ryouichi K, Naohiko H, Makoto K, Takehiro H, Kazuhiro S (2012b) Malting quality quantitative trait loci on a high-density map of Mikamo golden × Harrington cross in barley (Hordeum vulgare L.). Mol Breed 30:103–112. doi:10.1007/s11032-011-9602-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31271719), the Key Research Foundation of Science and Technology Department, Zhejiang Province, China (2012C12902-2), Zhejiang Leading Team of S&T Innovation (2011R50026-21), China Agriculture Research System (CARS-5), and the Grains Research and Development Corporation (GRDC) of Australia.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Yang or Meixue Zhou.

Additional information

Communicated by P. M. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 31 kb)

Supplementary material 2 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, J., Zhang, Q. et al. Mapping a major QTL for malt extract of barley from a cross between TX9425 × Naso Nijo. Theor Appl Genet 128, 943–952 (2015). https://doi.org/10.1007/s00122-015-2481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2481-5

Keywords

Navigation