Skip to main content
Log in

Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea.

Abstract

Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R 2 values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J11:855–866

    Article  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421

    Article  CAS  PubMed  Google Scholar 

  • Burton WA, Ripley VL, Potts DA, Salisbury PA (2004) Assesment of genetic diversity in selected breeding lines and cultivars of canola quality Brassica juncea and their implications for canola breeding. Euphytica 136:181–192

    Article  CAS  Google Scholar 

  • Cheung WY, Landry BS, Raney P, Rakow GFW (1998) Molecular mapping of seed quality traits in Brassica juncea L. Czern Coss Acta Hortic 459:139–147

    CAS  Google Scholar 

  • De Kraker JW, Luck K, Textor S, Tokuhisa JG, Gershenzon J (2007) Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branch point step in the biosynthesis of leucine. Plant Physiol 143:970–986

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li G, Potter D, McCombie WR, Quiros CF (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yu X, Ma F, Li J (2014) RNA-Seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleraceavar. italica). PLoS One 9(2):e88804. doi:10.1371/journal.pone.0088804

    Article  PubMed Central  PubMed  Google Scholar 

  • Gland A, Röbbelen G, Thies W (1981) Variation in alkenyl glucosinolates in seeds of Brassica species. J Plant Breed 87:96–110

    CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths DW, Birch ANE, Hillman JR (1998) Anti-nutritional compounds in the Brassicaceae––analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 73:1–18

    Article  CAS  Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Kräling K, Röbbelen G, Thies W, Herrmann M, Ahmadi R (1990) Variation of seed glucosinolates in lines of Brassica napus. Plant Breed 105:33–39

    Article  Google Scholar 

  • Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    CAS  PubMed  Google Scholar 

  • Li G, Gao M, Yang B, Quiros CF (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168–180

    Article  CAS  PubMed  Google Scholar 

  • Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109:792–799

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Hammerlindl J, Keller W, McVetty PBE, Daayf F, Quiros CF, Li G (2011) MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus. Mol Breed 27:467–478

    Article  CAS  Google Scholar 

  • Liu Z, Hirani AH, McVetty PBE, Daayf F, Quiros CF, Li G (2012) Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179–189

    Article  CAS  PubMed  Google Scholar 

  • Love HK, Rakow G, Raney JP, Downey RK (1990a) Development of low glucosinolate mustard. Can J Plant Sci 70:419–424

    Article  CAS  Google Scholar 

  • Love HK, Rakow G, Raney JP, Downey RK (1990b) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Can J Plant Sci 70:425–429

    Article  CAS  Google Scholar 

  • Magrath R, Herron C, Giamoustaris A, Mithen R (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111:55–72

    Article  CAS  Google Scholar 

  • Magrath R, Bano F, Morgner M, Parkin I, Sharpe A, Lister C, Dean C, Turner J, Lydiate D, Mithen R (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299

    Article  CAS  Google Scholar 

  • Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46:753–760

    Article  CAS  PubMed  Google Scholar 

  • McVetty PBE, Fernando D, Li G, Tahir M, Zelmer C (2009) High-erucic acid, and low-glucosinolate rapeseed (HEAR) cultivar development in Canada. In: Hou CT, Shaw JF (eds) Biocatalysis and agricultural biotechnology. CRC, Boca Raton, FL, USA, pp 43–61

    Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113

    Article  Google Scholar 

  • Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D (2014) RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genom 15:396

    Article  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007a) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007b) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of major oilseed crop of dryland areas. Theor Appl Genet 115:807–817

    Article  CAS  PubMed  Google Scholar 

  • Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D, Pradhan AK (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breeding 121:508–511

    Article  CAS  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Sotelo T, Soengas P, Velasco P, Rodriguez VM, Cartea ME (2014) Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 9(3):e91428. doi:10.1371/journal.pone.0091428

    Article  PubMed Central  PubMed  Google Scholar 

  • SPAR 2.0 (2005) Statistical package for agricultural research data analysis. Indian Agricultural Statistical Research Institute, New Delhi

  • Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199

    Article  CAS  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theor Appl Genet 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer, WinQTLCart V2.5. Program in statistical genetics, North Carolina State University. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Song N, Zhao X, Qi X, Hu Z, Zhang M (2014) Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea. BMC Genom 15:107

    Article  Google Scholar 

  • Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH, Seol YJ, Hong SB, Park BS (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the National Dairy Development Board (NDDB) and also partly supported by the Department of Biotechnology, Government of India, through the award of a Centre of Excellence on Brassica breeding. K. Rout and M. Sharma acknowledge the receipt of research fellowship from the NDDB and UGC, respectively.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay K. Pradhan.

Additional information

Communicated by Carlos F. Quiros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, K., Sharma, M., Gupta, V. et al. Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. Theor Appl Genet 128, 657–666 (2015). https://doi.org/10.1007/s00122-015-2461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2461-9

Keywords

Navigation