Theoretical and Applied Genetics

, Volume 128, Issue 3, pp 529–538 | Cite as

Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.)

  • Jillian M. Foerster
  • Timothy Beissinger
  • Natalia de Leon
  • Shawn Kaeppler
Original Paper


Key message

Natural variation for the timing of vegetative phase change in maize is controlled by several large effect loci, one corresponding to Glossy15 , a gene known for regulating juvenile tissue traits.


Vegetative phase change is an intrinsic component of developmental programs in plants. Juvenile and adult vegetative tissues in grasses differ dramatically in their anatomical and biochemical composition affecting the utility of specific genotypes as animal feed and biofuel feedstock. The molecular network controlling the process of developmental transition is incompletely characterized. In this study, we used scoring for juvenile and adult epicuticular wax as an entry point to discover quantitative trait loci (QTL) controlling phenotypic variation for the developmental timing of juvenile to adult transition in maize. We scored the last leaf with juvenile wax on 25 recombinant inbred line families of the B73 reference Nested Association Mapping (NAM) population and the intermated B73×Mo17 (IBM) population across multiple seasons. A total of 13 unique QTL were identified through genome-wide association analysis across the NAM populations, three of which have large effects. A QTL located on chromosome nine had the most significant SNPs within Glossy15, a gene controlling expression of juvenile leaf traits. The second large effect QTL is located on chromosome two. The most significant SNP in this QTL is located adjacent to a homolog of the Arabidopsis transcription factor, enhanced downy mildew-2, which has been shown to promote the transition from juvenile to adult vegetative phase. Overall, these results show that several major QTL and potential candidate genes underlie the extensive natural variation for this developmental trait.


Quantitative Trait Locus Bulliform Cell Pollen Shed Nest Association Mapping Nest Association Mapping Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). J.F. and T.B. were supported by Monsanto Graduate Fellowships that were a gift to the Plant Breeding and Plant Genetics program at the University of Wisconsin-Madison. We thank William Tracy for his valuable advice.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments comply with the current laws of the United States.

Supplementary material

122_2014_2451_MOESM1_ESM.txt (49 kb)
Supplemental File 1. NAM founder protein sequence alignment for Glossy15 (TXT 49 kb)
122_2014_2451_MOESM2_ESM.txt (7 kb)
Supplemental File 2. NAM founder protein sequence alignment for GRMZM2G362718 (TXT 6 kb)
122_2014_2451_MOESM3_ESM.docx (19 kb)
Supplemental Table  1 . By-population repeatabilities for the last leaf with epicuticular wax (LLEW). Supplemental Table  2 . Summary of joint linkage mapping in NAM with founder genotypes of each significant QTL. Supplemental Table 3. GRMZM2G362718 and Glossy15 gene expression in shoot apex for the NAM founder lines (DOCX 19 kb)
122_2014_2451_MOESM4_ESM.pdf (514 kb)
Supplemental Fig. 1. Correlation of last leaf with epicuticular wax (LLEW) and (a) total node number, (b) days to pollen shed and (c) days to silk emergence (PDF 514 kb)
122_2014_2451_MOESM5_ESM.pdf (60 kb)
Supplemental Fig. 2. Alignment of the miR156 microRNA binding site to two SPL-like candidate genes. A). GRMZM2G414805 (SPL-11) B.) GRMZM2G097275 (SPL-12) (PDF 60 kb)


  1. Abedon BG, Hatfield RD, Tracy WF (2006) Cell wall composition in juvenile and adult leaves of maize (Zea mays L.). J Agric Food Chem 54:3896–3900. doi: 10.1021/jf052872w CrossRefPubMedGoogle Scholar
  2. Berardini TZ, Bollman K, Sun H, Poethig RS (2001) Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science 291:2405–2407. doi: 10.1126/science.1057144 CrossRefPubMedGoogle Scholar
  3. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504. doi: 10.1242/dev.00362 CrossRefPubMedGoogle Scholar
  4. Bongard-Pierce DK, Evans MMS, Poethig RS (1996) Heteroblastic Features of Leaf Anatomy in Maize and Their Genetic Regulation. Int J Plant Sci 157:331–340. doi: 10.1086/297353 CrossRefGoogle Scholar
  5. Broman K, Wu H, Sen Ś, Churchill G (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi: 10.1093/bioinformatics/btg112 CrossRefPubMedGoogle Scholar
  6. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time, United States. Science 325:714–718. doi: 10.1126/science.1174276 CrossRefPubMedGoogle Scholar
  7. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubutz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MM, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux, United States. Nat Genet 44:803–807. doi: 10.1038/ng.2313 CrossRefPubMedGoogle Scholar
  8. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA, United States. Nat Genet 39:544–549. doi: 10.1038/ng2001 CrossRefPubMedGoogle Scholar
  9. Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass, United States. Proc Natl Acad Sci USA 108:17550–17555. doi: 10.1073/pnas.1113971108 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels, United States. Plant Physiol 158:824–834. doi: 10.1104/pp.111.185033 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Evans MM, Passas HJ, Poethig RS (1994) Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development 120:1971–1981PubMedGoogle Scholar
  12. Fehr WR (1993) Principles of Cultivar Development, vol 1. Macmillan Publishing Company, New YorkGoogle Scholar
  13. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize, United States. Science 326:1115–1117. doi: 10.1126/science.1177837 CrossRefPubMedGoogle Scholar
  14. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Penagaricano F, de Leon N, Kaeppler SM, Buell CR (2014) Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 26:121–135. doi: 10.1105/tpc.113.119982 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Huijser P, Schmid M (2011) The control of developmental phase transitions in plants, England. Development 138:4117–4129. doi: 10.1242/dev.063511 CrossRefPubMedGoogle Scholar
  16. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1078. doi: 10.1038/nprot.2009.86 CrossRefPubMedGoogle Scholar
  17. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168. doi: 10.1038/ng.747 CrossRefPubMedGoogle Scholar
  18. Lawson EJ, Poethig RS (1995) Shoot development in plants: time for a change, England. Trends Genet 11:263–268. doi: 10.1016/S0168-9525(00)89072-1 CrossRefPubMedGoogle Scholar
  19. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73×Mo17 (IBM) population. Plant Mol Biol 48:453–461. doi: 10.1023/A:1014893521186 CrossRefPubMedGoogle Scholar
  20. Li X, Zhu C, Yeh C, Wu W, Takacs EM, Petsch KA, Tian F, Bai G, Buckler ES, Muehlbauer GJ, Timmermans MCP, Scanlon MJ, Schnable PS, Yu J (2012) Genic and nongenic contributions to natural variation of quantitative traits in maize. Gen Res 22:2436–2444. doi: 10.1101/gr.140277.112 CrossRefGoogle Scholar
  21. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population, United States. Science 325:737–740. doi: 10.1126/science.1174320 CrossRefPubMedGoogle Scholar
  22. Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase-transition in maize. Plant Cell 6:1343–1355. doi: 10.1105/tpc.6.10.1343   CrossRefPubMedCentralPubMedGoogle Scholar
  23. Moose SP, Sisco PH (1996) Glossyl5, an APETALA2-1ike gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027CrossRefPubMedGoogle Scholar
  24. Nonogaki H (2010) MicroRNA gene regulation cascades during early stages of plant development, Japan. Plant Cell Physiol 51:1840–1846. doi: 10.1093/pcp/pcq154 CrossRefPubMedGoogle Scholar
  25. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379. doi: 10.1101/gad.1231804 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Poethig RS (1990) Phase-change and the regulation of shoot morphogenesis in plants. Science 250:923–930CrossRefPubMedGoogle Scholar
  27. Poethig RS (2003) Phase change and the regulation of developmental timing in plants, United States. Science 301:334–336. doi: 10.1126/science.1085328 CrossRefPubMedGoogle Scholar
  28. Riedeman ES, Chandler MA, Tracy WF (2008) Divergent recurrent selection for vegetative phase change and effects on agronomic traits and corn borer resistance. Crop Sci 48:1723–1731. doi: 10.2135/cropsci2007.09.0511 CrossRefGoogle Scholar
  29. Schnable J (2013) NAM qTeller,
  30. Shin J, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibrium between single nucleotide polymorphisms. J Stastical Soft 23(6):774–776. doi: 10.1093/bioinformatics/btl657 Google Scholar
  31. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population, United States. Nat Genet 43:159–162. doi: 10.1038/ng.746 CrossRefPubMedGoogle Scholar
  32. Tsuchiya T, Eulgem T (2010a) Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development, England. BMC Plant Biol 10:203. doi: 10.1186/1471-2229-10-203 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Tsuchiya T, Eulgem T (2010b) The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner, England. Plant J 62:518–528. doi: 10.1111/j.1365-313X.2010.04169.x CrossRefPubMedGoogle Scholar
  34. van Nocker S, Muszynski M, Briggs K, Amasino RM (2000) Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Mol Biol 44:107–122. doi: 10.1023/A:1006472929800 CrossRefGoogle Scholar
  35. Willmann MR, Poethig RS (2005) Time to grow up: the temporal role of small RNAs in plants, England. Curr Opin Plant Biol 8:548–552. doi: 10.1016/j.pbi.2005.07.008 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Willmann MR, Poethig RS (2011) The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis, England. Development 138:677–685. doi: 10.1242/dev.057448 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize, England. Curr Opin Biotechnol 17:155–160. doi: 10.1016/j.copbio.2006.02.003 CrossRefPubMedGoogle Scholar
  38. Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151. doi: 10.1007/s12229-010-9062-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jillian M. Foerster
    • 1
    • 4
  • Timothy Beissinger
    • 1
    • 2
  • Natalia de Leon
    • 1
    • 3
  • Shawn Kaeppler
    • 1
    • 3
  1. 1.Department of AgronomyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Animal ScienceUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.DOE Great Lakes Bioenergy Research CenterMadisonUSA
  4. 4.DuPont PioneerJohnstonUSA

Personalised recommendations