Skip to main content

Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes

An Erratum to this article was published on 10 January 2015

Abstract

Key message

Using genome-wide association studies, 39 SNP markers likely tagging 21 different loci for carbon isotope ratio (δ 13 C) were identified in soybean.

Abstract

Water deficit stress is a major factor limiting soybean [Glycine max (L.) Merr.] yield. Soybean genotypes with improved water use efficiency (WUE) may be used to develop cultivars with increased yield under drought. A collection of 373 diverse soybean genotypes was grown in four environments (2 years and two locations) and characterized for carbon isotope ratio (δ13C) as a surrogate measure of WUE. Population structure was assessed based on 12,347 single nucleotide polymorphisms (SNPs), and genome-wide association studies (GWAS) were conducted to identify SNPs associated with δ13C. Across all four environments, δ13C ranged from a minimum of −30.55 ‰ to a maximum of −27.74 ‰. Although δ13C values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. Diversity analysis indicated that eight subpopulations could contain all individuals and revealed that within-subpopulation diversity, rather than among-subpopulation diversity, explained most (80 %) of the diversity among the 373 genotypes. A total of 39 SNPs that showed a significant association with δ13C in at least two environments or for the average across all environments were identified by GWAS. Fifteen of these SNPs were located within a gene. The 39 SNPs likely tagged 21 different loci and demonstrated that markers for δ13C can be identified in soybean using GWAS. Further research is necessary to confirm the marker associations identified and to evaluate their usefulness for selecting genotypes with increased WUE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abdurakhmonov I, Abdukarimov A (2008) Application of Association Mapping to Understanding the Genetic Diversity of Plant Germplasm Resources. Int J Plant Genomics. doi:10.1155/2008/574927

    PubMed Central  PubMed  Google Scholar 

  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    CAS  PubMed  Article  Google Scholar 

  • Anderson MJ, Ter Braak CJF (2003) Permutations tests for multifactorial analysis of variance. J Stat Comput Simul 73:85–113

    Article  Google Scholar 

  • Angus J, van Herwarden AF (2001) Increasing water use and water use efficiency in dryland wheat. Agron J 93:290–298

    Article  Google Scholar 

  • Aranzana MJ, Abbassi EK, Howad W, Arus P (2010) Genetic variation, population structure and linkage disequilibrium in peachcommercial varieties. Genetics 11:69

    PubMed Central  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    PubMed Central  PubMed  Article  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    CAS  PubMed  Article  Google Scholar 

  • Baum M, Von Korff M, Guo P, Lakew B, Hamwieh A, Lababidi S, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney R, Tuberosa R Genomics-Assisted Crop Improvement, Volume 2: Genomics Applications in Crops. Springer, Dordrecht, pp 51–79

  • Belamkar V, Selvaraj MG, Ayers JL, Payton PR, Puppala N, Burow MD (2011) A first insight into population structure and linkage disequilibrium in the US peanut minicore collection. Genetica 139:411–429

    PubMed  Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Bondari K (2003) Statistical analysis of genotype x environment interaction in agricultural research. Paper SD15, SESUG: The Proceedings of the SouthEast SAS Users Group, St Pete Beach

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    PubMed Central  PubMed  Article  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Buckler E, Casstevens T, Bradbury P, Zhang Z (2009) Analysis byaSSociation, evolution and linkage (TASSEL) version 2.1. user manual. Cornell University, Ithaca

    Google Scholar 

  • Bush WS, Moore JH (2012) Chapter 11: Genome-wide association studies. PLoS Computional Biol 8: e1002822

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mappinganalyses of peach (Prunus persica) landraces in China. Tree Genetics Genomes 8:975–990

    Article  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao YM, Xu JL, Fan LM, Li Y, Li ZK, Deng XW (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theori App Genet 123:869–879

    Article  Google Scholar 

  • Chen J, Chang SX, Anyia AO (2012) Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies. Theor Appl Genet 125:71–90

    PubMed  Article  Google Scholar 

  • Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439

    PubMed Central  PubMed  Article  Google Scholar 

  • Condon AG, Richards RA (1992) Broad sense heritability and genotype environment interaction for carbon isotope discrimination in field-grown wheat. Aust J Agric Res 43:921–934

    Article  Google Scholar 

  • Condon AG, Farquhar GD, Richards RA (1990) Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat leaf gas exchange and whole plant studies. Aust J Plant Physiol 17:9–22

    Article  Google Scholar 

  • Condon AG, Richards RA, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    PubMed  Article  Google Scholar 

  • Condon AG, Farquhar GD, Rebetzke GJ, Richards RA (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    CAS  PubMed  Article  Google Scholar 

  • Dhanapal AP, Crisosto CH (2013) Association genetics of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiple years. 3 Biotech 3:481–490

    PubMed Central  Article  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genetics 127(4):791–807

    CAS  Article  Google Scholar 

  • Ehdaie B, Hall AE, Farquhar GD, Nguyen HT, Waines JG (1991) Water-use efficiency and carbon isotope discrimination in wheat. Crop Sci 31:1282–1288

    Article  Google Scholar 

  • Ehleringer JR, Klassen S, Clayton C, Sherrill D, Fuller-Holbrook M, Fu Q, Cooper T (1991) Carbon isotope discrimination and transpiration efficiency in common bean. Crop Sci 31:1611–1615

    CAS  Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aus J Plant Physiol 9:121–137

    CAS  Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol 40:503–538

    CAS  Article  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merr. Crop Sci 11:929–931

    Article  Google Scholar 

  • Geber MA, Dawson TE (1997) Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant Polygonum arenastrum. Oecologia 109:535–546

    Article  Google Scholar 

  • Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J Exp Bot 62:2875–2887

    CAS  PubMed  Article  Google Scholar 

  • Grant D, Nelson RT, Cannon SC (2013) SoyBase, the USDA-ARS genetics and genomics database. [WWW document] http://soybase.org

  • Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63:455–469

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Guo J, Liu Y, Wang Y, Chen J, Li Y, Huang H, Qiu L, Wang Y (2012) Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Ann Bot 110:777–785

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Hall AE, Mutters RG, Hubick KT, Farquhar GD (1990) Genotypic differences in carbon isotope discrimination by cowpea under wet and dry field conditions. Crop Sci 30:300–305

    Article  Google Scholar 

  • Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D (2012) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 124:447–458

    CAS  PubMed  Article  Google Scholar 

  • Hervé D, Fabre F, Berrios EF, Leroux N, Al Chaarani G, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot 52:1857–1864

    PubMed  Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15(1)

  • Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Ismail A, Hall A (1992) Correlation between water-use efficiency and carbon isotope discrimination in diverse cowpea genotypes and isogenic lines. Crop Sci 32:7–12

    CAS  Article  Google Scholar 

  • Johnson RC (1993) Carbon isotope discrimination, water relations, and photosynthesis in Tall Fescues. Crop Sci 33:169–174

    CAS  Article  Google Scholar 

  • Juenger TE, McKay JK, Hausmann N, Keurentjes J, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta C-13, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:697–708

    CAS  Article  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168

    CAS  PubMed  Article  Google Scholar 

  • Laza MR, Kondo M, Ideta O, Barlaan E, Imbe T (2006) Identification of quantitative trait loci from d13C and productivity in irrigated lowland rice. Crop Sci 46:763–773

    Article  Google Scholar 

  • Li Y, Li W, Zhang C, Yang L, Chang R, Gaut B, Qiu L (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single nucleotide polymorphism loci. New Phytol 188:242–253

    CAS  PubMed  Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Liu K, Muse SV (2005) Power Marker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    CAS  PubMed  Article  Google Scholar 

  • Louette D, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ Bot 51:20–38

    Article  Google Scholar 

  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor App Genetics 120:93–115

    CAS  Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Mian MAR, Bailey MA, Ashley DA, Wells R, Carter TE, Parrott WA, Boerma HR (1996) A Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36:1252–1257

    CAS  Article  Google Scholar 

  • Mian MAR, Ashley DA, Boerma HR (1998) An additional QTL for water use efficiency in soybean. Crop Sci 38:390–393

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    PubMed Central  PubMed  Article  Google Scholar 

  • Passioura JB (1977) Grain-yield, harvest index, and water-use of wheat. J Aust Inst Agric Sci 43:117–120

    Google Scholar 

  • Passioura JB (2004) Water-use efficiency in farmers’ fields. In: Bacon M (ed) Water-use efficiency in plant biology. Blackwell, Oxford, pp 302–321

    Google Scholar 

  • Peakall R, Smouse PE, GENALEX (2006) Genetic analyses in Excel. population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piepho HP, Möhring J (2007) Computing heritability and selection response From unbalanced plant breeding trials. Genetics 177:1881–1888

    PubMed Central  PubMed  Article  Google Scholar 

  • Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Article  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares- Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    PubMed Central  PubMed  Article  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafalski J (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    CAS  PubMed  Article  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN:3-900051-07-0, http://www.R-project.org

  • Ray JD, Kilen TC, Abel C, Paris RL (2003) Soybean natural cross- pollination rates under field conditions. Environ Biosaf Res 2:133–138

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield on rainfed bread wheat. Crop Sci 42:739–745

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137

    CAS  PubMed  Article  Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    PubMed  Article  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA 109:8872–8877

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    CAS  PubMed  Article  Google Scholar 

  • Saranga Y, Flash I, Paterson AH, Yakir D (1999) Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Sci 142:47–56

    CAS  Article  Google Scholar 

  • Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    CAS  Article  Google Scholar 

  • SAS-Institute-Inc (2004) SAS/STAT User’s guide version 9.2 SAS-Institute-Inc., Cary, NC

  • Shiferaw E, Pè ME, Porceddu E, Ponnaiah M (2012) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breeding 30:789–797

    CAS  Article  Google Scholar 

  • Sinclair TR (2012) Is transpiration efficiency a viable plant trait in breeding for crop improvement ? Funct Plant Biol 39:359–365

    Article  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J, Shinozaki K et al (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Takai T, Fukuta Y, Sugimoto A, Shiraiwa T, Horie T (2006) Mapping of QTLs controlling carbon isotope discrimination in the photosynthetic system using recombinant inbred lines derived from a cross between two different rice (Oryza sativa L.) cultivars. Plant Prod Sci 9:271–280

    CAS  Article  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    CAS  PubMed  Google Scholar 

  • Tuberosa R (2013) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 8:405–412

    Article  Google Scholar 

  • Tuberosa R, Gill BS, Quarrie SA (2002) Cereal genomics: ushering in a brave new world. Plant Mol Biol 48:445–449

    CAS  PubMed  Article  Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J (2011) Population structure and marker–trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123:1307–1317

    PubMed  Article  Google Scholar 

  • Wingate L, Og´ee J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A (2010) Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytol 188:576–589

    CAS  PubMed  Article  Google Scholar 

  • Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    PubMed  Article  Google Scholar 

  • Yoneyama T, Fujiwara H, Engelaar WM (2000) Weather and nodule mediated variations in delta 13C and delta 15N values in field-grown soybean (Glycine max L.) with special interest in the analyses of xylem fluids. J Exp Bot 344:559–566

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler E (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Article  Google Scholar 

  • Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, Gore M, Bradbury P, Yu J, Arnett D, Ordovas J, Buckler E (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Commun 2:467

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by United States Department of Agriculture–Agriculture Research Service (USDA-ARS) project number 6402-21220-010-00D and United Soybean Board project numbers 9274 and 1274. We appreciate the assistance of Dr. Randall Nelson, curator of the USDA-ARS Germplasm Collection in selecting the genotypes evaluated in this study.

Conflict of interest

The authors have declared that no competing or conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix B. Fritschi.

Additional information

Communicated by Jianbing Yan.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply approval or the exclusion of other products that may also be suitable.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhanapal, A.P., Ray, J.D., Singh, S.K. et al. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128, 73–91 (2015). https://doi.org/10.1007/s00122-014-2413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2413-9

Keywords

  • Carbon isotope ratio
  • Genome wide association studies (GWAS)
  • SNPs
  • Water use efficiency (WUE)