Advertisement

Theoretical and Applied Genetics

, Volume 127, Issue 11, pp 2313–2331 | Cite as

Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production

  • R. Rincent
  • S. Nicolas
  • S. Bouchet
  • T. Altmann
  • D. Brunel
  • P. Revilla
  • R. A. Malvar
  • J. Moreno-Gonzalez
  • L. Campo
  • A. E. Melchinger
  • W. Schipprack
  • E. Bauer
  • C.-C. Schoen
  • N. Meyer
  • M. Ouzunova
  • P. Dubreuil
  • C. Giauffret
  • D. Madur
  • V. Combes
  • F. Dumas
  • C. Bauland
  • P. Jamin
  • J. Laborde
  • P. Flament
  • L. Moreau
  • A. Charcosset
Original Paper

Abstract

Key message

Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels.

Abstract

The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40 % with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.

Keywords

Quantitative Trait Locus Linkage Disequilibrium Genome Wide Association Study Flint Association Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very grateful to all who made possible the gathering of their inbred lines to our panels. In particular, Mark Millard from United States Department of Agriculture North Central Regional Plant Introduction Station (NCRPIS) of Ames, USA; Natalia de Leon from University of Wisconsin, USA; Geert Kleijer from Agroscope Changins-Wädenswil of Nyon (ETH Zurich) Switzerland; Wolfgang Schipprack from Universität Hohenheim (UH) of Eckartsweier, Germany; Rita Redaelli from Unita Di Ricerca per la Maiscoltura of Bergamo (ISC), Italy; Amando Ordás from Misión Biológica de Galicia of Pontevedra (CSIC), Spain; Ángel Álvarez from Estacion Experimental de Aula Dei of Zaragoza, Spain; José Ignacio Ruiz de Galarreta from Centro Neiker de Arkaute of Vitoria, Spain; colleagues from Centro de Investigaciones Agrarias de Mabegondo (CIAM), Spain and colleagues from Institut National de la Rercherche Agronomique of (INRA) Saint Martin de Hinx, France. This research was jointly supported as “Cornfed project” by the French National Agency for Research (ANR), the German Federal Ministry of Education and Research (BMBF), and the Spanish ministry of Science and Innovation (MICINN). R. Rincent is jointly funded by Limagrain, Biogemma, KWS, and the French ANRt. L. Moreau, S. Nicolas and A. Charcosset conducted this research in the framework of Amaizing Investissement d’Avenir program. The authors thank the reviewers and the editor for their comments which improved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the countries in which the experiments were performed.

Supplementary material

122_2014_2379_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)
122_2014_2379_MOESM2_ESM.docx (62 kb)
Supplementary material 2 (DOCX 61 kb)
122_2014_2379_MOESM3_ESM.docx (598 kb)
Supplementary material 3 (DOCX 598 kb)
122_2014_2379_MOESM4_ESM.xls (110 kb)
Supplementary material 4 (XLS 110 kb)
122_2014_2379_MOESM5_ESM.xls (102 kb)
Supplementary material 5 (XLS 102 kb)
122_2014_2379_MOESM6_ESM.xlsx (14 kb)
Supplementary material 6 (XLSX 14 kb)
122_2014_2379_MOESM7_ESM.xls (29 kb)
Supplementary material 7 (XLS 29 kb)
122_2014_2379_MOESM8_ESM.xlsx (30 kb)
Supplementary material 8 (XLSX 29 kb)
122_2014_2379_MOESM9_ESM.txt (4 kb)
Supplementary material 9 (TXT 4 kb)
122_2014_2379_MOESM10_ESM.zip (2.1 mb)
Supplementary material 10 (ZIP 2173 kb)
122_2014_2379_MOESM11_ESM.zip (1.9 mb)
Supplementary material 11 (ZIP 1927 kb)
122_2014_2379_MOESM12_ESM.zip (10 kb)
Supplementary material 12 (ZIP 9 kb)
122_2014_2379_MOESM13_ESM.zip (11 kb)
Supplementary material 13 (ZIP 10 kb)
122_2014_2379_MOESM14_ESM.xls (40 kb)
Supplementary material 14 (XLS 40 kb)

References

  1. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664PubMedCrossRefPubMedCentralGoogle Scholar
  2. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471CrossRefGoogle Scholar
  3. Barrière Y, Gibelin C, Argillier O, Méchin V (2001) Genetic analysis and QTL mapping in forage maize based on recombinant inbred lines descended from the cross between F288 and F271. I—yield, earliness, starch and crude protein content. Maydica 46:253–266Google Scholar
  4. Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcrossexperiments of F838xF286 RIL progenies. Crop Sci 50:1761–1772CrossRefGoogle Scholar
  5. Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2007) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10PubMedCrossRefGoogle Scholar
  6. Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8:e71377PubMedCrossRefPubMedCentralGoogle Scholar
  7. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223PubMedCrossRefPubMedCentralGoogle Scholar
  8. Camus-Kulandaivelu L, Veyrieras J-B, Madur D, Combes V, Fourmann M et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chardon F, Hourcade D, Combes V, Charcosset A (2005) Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet 112:1–11PubMedCrossRefGoogle Scholar
  10. Djemel A, Romay MC, Revilla P, Khelifi L, Ordás A, Ordás B (2013) Genomic regions affecting fitness of the sweetcorn mutant sugary1. J Agric Sci 151:396–406CrossRefGoogle Scholar
  11. Dubreuil P, Dufour P, Krejci E, Causse M, De Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799CrossRefGoogle Scholar
  12. Ducrocq S, Madur D, Veyrieras J-B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ewens W, Spielman R (1995) The transmission disequilibrium test—history, subdivision and admixture. Am J Hum Genet 57:455–464PubMedCrossRefPubMedCentralGoogle Scholar
  15. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  16. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  17. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement software. Pract Exp 21:1129–1164CrossRefGoogle Scholar
  18. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gilmour AR, Gogel B, Cullis BR, Thompson R (2009) ASREML user guide release 30VSN International Ltd, Hemel Hempstead, UKGoogle Scholar
  20. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of Maize. Science 326:1115–1117PubMedCrossRefGoogle Scholar
  21. Goudet J (2005) Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186CrossRefGoogle Scholar
  22. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338CrossRefGoogle Scholar
  23. Hamblin M, Warburton M, Buckler E (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  25. Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges and prospects 1 Methane yield potential. Bio Energy Res 5(4):1027–1042Google Scholar
  26. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 33:226–231CrossRefGoogle Scholar
  27. Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78PubMedCrossRefGoogle Scholar
  28. Jannink JL, Walsh B (2003) Association mapping in plant populations p 59–68. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB Int, New YorkGoogle Scholar
  29. Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–1044PubMedCrossRefPubMedCentralGoogle Scholar
  30. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the Eigen values of a correlation matrix. Heredity 95:221–227PubMedCrossRefGoogle Scholar
  31. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E et al (2012) Improved linear mixed models for genome-wide association studies. Nat Method 9:525–526CrossRefGoogle Scholar
  32. Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  33. Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291PubMedCrossRefPubMedCentralGoogle Scholar
  34. Mikel MA (2006) Availability and analysis of proprietary Dent corn inbred lines with expired US plant variety protection. Crop Sci 46:2555CrossRefGoogle Scholar
  35. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323PubMedCrossRefPubMedCentralGoogle Scholar
  36. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583PubMedPubMedCentralGoogle Scholar
  37. Nelson PT, Coles ND, Holland JB, Bubeck DM, Smith S et al (2008) Molecular characterization of Maize inbreds with expired US plant variety protection. Crop Sci 48:1673CrossRefGoogle Scholar
  38. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654PubMedCrossRefGoogle Scholar
  39. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z et al (2014) The genetic architecture of maize height. Genetics 196(4):1337–1356Google Scholar
  40. Pettem F (1956) Dwarfs. Maize genetics cooperation. Newsletter 30:9–10Google Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945PubMedPubMedCentralGoogle Scholar
  42. R development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Rath J, Heuwinkel H, Herrmann A (2013) Specific biogas yield of maize can be predicted by the interaction of four biochemical constituents. BioEnergy Res 6(3):939–952CrossRefGoogle Scholar
  44. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903PubMedGoogle Scholar
  45. Revilla P, Malvar RA, Cartea ME, Soengas P, Ordás A (2002) Heterotic relationships among European maize inbreds. Euphytica 126:259–264CrossRefGoogle Scholar
  46. Revilla P, Soengas P, Cartea ME, Malvar RA, Ordás A (2003) Isozyme variability among European maize populations and the introduction of maize in Europe. Maydica 48:141–152Google Scholar
  47. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220PubMedCrossRefGoogle Scholar
  48. Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of Maize inbreds (Zea mays L.). Genetics 192:715–728PubMedCrossRefPubMedCentralGoogle Scholar
  49. Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE et al (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387PubMedCrossRefGoogle Scholar
  50. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55PubMedCrossRefPubMedCentralGoogle Scholar
  51. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381PubMedCrossRefPubMedCentralGoogle Scholar
  52. Salvi S, Castelletti S, Tuberosa R (2009) An updated consensus map for flowering time QTLs in maize. Maydica 54:501Google Scholar
  53. SAS Institute (2011) Release 9.3. SAS Inst., Cary, NC, USAGoogle Scholar
  54. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  55. Truntzler M, Ranc N, Sawkins M, Nicolas S, Manicacci D, Lespinasse D, Ribière V, Galaup P, Servant F, Muller C et al (2012) Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theor Appl Genet 125(4):731–747PubMedCrossRefGoogle Scholar
  56. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299PubMedCrossRefPubMedCentralGoogle Scholar
  57. Van Inghelandt D, Melchinger AE, Martinant J-P, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56PubMedCrossRefPubMedCentralGoogle Scholar
  58. VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423PubMedCrossRefGoogle Scholar
  59. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinf 8:49CrossRefGoogle Scholar
  60. Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482CrossRefGoogle Scholar
  61. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Rincent
    • 1
    • 2
    • 3
    • 4
  • S. Nicolas
    • 1
  • S. Bouchet
    • 1
    • 14
  • T. Altmann
    • 5
    • 6
  • D. Brunel
    • 7
  • P. Revilla
    • 8
  • R. A. Malvar
    • 8
  • J. Moreno-Gonzalez
    • 9
  • L. Campo
    • 9
  • A. E. Melchinger
    • 10
  • W. Schipprack
    • 10
  • E. Bauer
    • 11
  • C.-C. Schoen
    • 11
  • N. Meyer
    • 3
  • M. Ouzunova
    • 3
  • P. Dubreuil
    • 2
  • C. Giauffret
    • 12
  • D. Madur
    • 1
  • V. Combes
    • 1
  • F. Dumas
    • 1
  • C. Bauland
    • 1
  • P. Jamin
    • 1
  • J. Laborde
    • 13
  • P. Flament
    • 4
  • L. Moreau
    • 1
  • A. Charcosset
    • 1
  1. 1.UMR de Génétique VégétaleINRA, Université Paris-Sud, CNRS, AgroParisTech, Ferme du MoulonGif-Sur-YvetteFrance
  2. 2.BIOGEMMA, Genetics and Genomics in CerealsChappesFrance
  3. 3.KWS Saat AGEinbeckGermany
  4. 4.Limagrain, site d’ULICE, av G. GershwinRiom CedexFrance
  5. 5.Max-Planck Institute for Molecular Plant PhysiologyPotsdam-GolmGermany
  6. 6.Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  7. 7.INRA, UR 1279 Etude du Polymorphisme des Génomes VégétauxCEA Institut de Génomique, Centre National de GénotypageEvryFrance
  8. 8.Misión Biológica de GaliciaSpanish National Research Council (CSIC)PontevedraSpain
  9. 9.Centro de Investigaciones Agrarias de MabegondoLa CorunaSpain
  10. 10.Institute of Plant Breeding, Seed Science, and Population GeneticsUniversity of HohenheimStuttgartGermany
  11. 11.Plant BreedingTechnische Universität MünchenFreisingGermany
  12. 12.INRA/Université des Sciences et Technologies de Lille, UMR1281, Stress Abiotiques et Différenciation des Végétaux CultivésPéronne CedexFrance
  13. 13.INRA Stn Expt MaisSt Martin De HinxFrance
  14. 14.Department of Agronomy, Throckmorton Plant Science CenterKansas State UniversityManhattanUSA

Personalised recommendations