Skip to main content

Advertisement

Log in

Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels.

Abstract

The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40 % with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  • Barrière Y, Gibelin C, Argillier O, Méchin V (2001) Genetic analysis and QTL mapping in forage maize based on recombinant inbred lines descended from the cross between F288 and F271. I—yield, earliness, starch and crude protein content. Maydica 46:253–266

    Google Scholar 

  • Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcrossexperiments of F838xF286 RIL progenies. Crop Sci 50:1761–1772

    Article  Google Scholar 

  • Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2007) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10

    Article  PubMed  Google Scholar 

  • Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8:e71377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras J-B, Madur D, Combes V, Fourmann M et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chardon F, Hourcade D, Combes V, Charcosset A (2005) Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet 112:1–11

    Article  PubMed  CAS  Google Scholar 

  • Djemel A, Romay MC, Revilla P, Khelifi L, Ordás A, Ordás B (2013) Genomic regions affecting fitness of the sweetcorn mutant sugary1. J Agric Sci 151:396–406

    Article  CAS  Google Scholar 

  • Dubreuil P, Dufour P, Krejci E, Causse M, De Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras J-B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  PubMed Central  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ewens W, Spielman R (1995) The transmission disequilibrium test—history, subdivision and admixture. Am J Hum Genet 57:455–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement software. Pract Exp 21:1129–1164

    Article  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilmour AR, Gogel B, Cullis BR, Thompson R (2009) ASREML user guide release 30VSN International Ltd, Hemel Hempstead, UK

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of Maize. Science 326:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2005) Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Hamblin M, Warburton M, Buckler E (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges and prospects 1 Methane yield potential. Bio Energy Res 5(4):1027–1042

    CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 33:226–231

    Article  Google Scholar 

  • Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78

    Article  PubMed  CAS  Google Scholar 

  • Jannink JL, Walsh B (2003) Association mapping in plant populations p 59–68. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB Int, New York

    Google Scholar 

  • Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–1044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the Eigen values of a correlation matrix. Heredity 95:221–227

    Article  PubMed  CAS  Google Scholar 

  • Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E et al (2012) Improved linear mixed models for genome-wide association studies. Nat Method 9:525–526

    Article  CAS  Google Scholar 

  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  PubMed  CAS  Google Scholar 

  • Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mikel MA (2006) Availability and analysis of proprietary Dent corn inbred lines with expired US plant variety protection. Crop Sci 46:2555

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson PT, Coles ND, Holland JB, Bubeck DM, Smith S et al (2008) Molecular characterization of Maize inbreds with expired US plant variety protection. Crop Sci 48:1673

    Article  Google Scholar 

  • Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654

    Article  PubMed  CAS  Google Scholar 

  • Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z et al (2014) The genetic architecture of maize height. Genetics 196(4):1337–1356

  • Pettem F (1956) Dwarfs. Maize genetics cooperation. Newsletter 30:9–10

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    PubMed  CAS  PubMed Central  Google Scholar 

  • R development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rath J, Heuwinkel H, Herrmann A (2013) Specific biogas yield of maize can be predicted by the interaction of four biochemical constituents. BioEnergy Res 6(3):939–952

    Article  CAS  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    PubMed  CAS  Google Scholar 

  • Revilla P, Malvar RA, Cartea ME, Soengas P, Ordás A (2002) Heterotic relationships among European maize inbreds. Euphytica 126:259–264

    Article  Google Scholar 

  • Revilla P, Soengas P, Cartea ME, Malvar RA, Ordás A (2003) Isozyme variability among European maize populations and the introduction of maize in Europe. Maydica 48:141–152

    Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  PubMed  CAS  Google Scholar 

  • Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of Maize inbreds (Zea mays L.). Genetics 192:715–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE et al (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387

    Article  PubMed  Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salvi S, Castelletti S, Tuberosa R (2009) An updated consensus map for flowering time QTLs in maize. Maydica 54:501

    Google Scholar 

  • SAS Institute (2011) Release 9.3. SAS Inst., Cary, NC, USA

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Truntzler M, Ranc N, Sawkins M, Nicolas S, Manicacci D, Lespinasse D, Ribière V, Galaup P, Servant F, Muller C et al (2012) Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theor Appl Genet 125(4):731–747

    Article  PubMed  CAS  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Martinant J-P, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinf 8:49

    Article  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to all who made possible the gathering of their inbred lines to our panels. In particular, Mark Millard from United States Department of Agriculture North Central Regional Plant Introduction Station (NCRPIS) of Ames, USA; Natalia de Leon from University of Wisconsin, USA; Geert Kleijer from Agroscope Changins-Wädenswil of Nyon (ETH Zurich) Switzerland; Wolfgang Schipprack from Universität Hohenheim (UH) of Eckartsweier, Germany; Rita Redaelli from Unita Di Ricerca per la Maiscoltura of Bergamo (ISC), Italy; Amando Ordás from Misión Biológica de Galicia of Pontevedra (CSIC), Spain; Ángel Álvarez from Estacion Experimental de Aula Dei of Zaragoza, Spain; José Ignacio Ruiz de Galarreta from Centro Neiker de Arkaute of Vitoria, Spain; colleagues from Centro de Investigaciones Agrarias de Mabegondo (CIAM), Spain and colleagues from Institut National de la Rercherche Agronomique of (INRA) Saint Martin de Hinx, France. This research was jointly supported as “Cornfed project” by the French National Agency for Research (ANR), the German Federal Ministry of Education and Research (BMBF), and the Spanish ministry of Science and Innovation (MICINN). R. Rincent is jointly funded by Limagrain, Biogemma, KWS, and the French ANRt. L. Moreau, S. Nicolas and A. Charcosset conducted this research in the framework of Amaizing Investissement d’Avenir program. The authors thank the reviewers and the editor for their comments which improved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the countries in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Charcosset.

Additional information

Communicated by Michael Gore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincent, R., Nicolas, S., Bouchet, S. et al. Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theor Appl Genet 127, 2313–2331 (2014). https://doi.org/10.1007/s00122-014-2379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2379-7

Keywords

Navigation