Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production

Abstract

Key message

Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels.

Abstract

The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40 % with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  3. Barrière Y, Gibelin C, Argillier O, Méchin V (2001) Genetic analysis and QTL mapping in forage maize based on recombinant inbred lines descended from the cross between F288 and F271. I—yield, earliness, starch and crude protein content. Maydica 46:253–266

    Google Scholar 

  4. Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcrossexperiments of F838xF286 RIL progenies. Crop Sci 50:1761–1772

    Article  Google Scholar 

  5. Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2007) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10

    PubMed  Article  Google Scholar 

  6. Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8:e71377

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. Camus-Kulandaivelu L, Veyrieras J-B, Madur D, Combes V, Fourmann M et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. Chardon F, Hourcade D, Combes V, Charcosset A (2005) Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet 112:1–11

    PubMed  Article  CAS  Google Scholar 

  10. Djemel A, Romay MC, Revilla P, Khelifi L, Ordás A, Ordás B (2013) Genomic regions affecting fitness of the sweetcorn mutant sugary1. J Agric Sci 151:396–406

    Article  CAS  Google Scholar 

  11. Dubreuil P, Dufour P, Krejci E, Causse M, De Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  12. Ducrocq S, Madur D, Veyrieras J-B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    PubMed  Article  PubMed Central  Google Scholar 

  13. Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. Ewens W, Spielman R (1995) The transmission disequilibrium test—history, subdivision and admixture. Am J Hum Genet 57:455–464

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    PubMed  Article  CAS  Google Scholar 

  17. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement software. Pract Exp 21:1129–1164

    Article  Google Scholar 

  18. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. Gilmour AR, Gogel B, Cullis BR, Thompson R (2009) ASREML user guide release 30VSN International Ltd, Hemel Hempstead, UK

  20. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of Maize. Science 326:1115–1117

    PubMed  Article  CAS  Google Scholar 

  21. Goudet J (2005) Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  22. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  23. Hamblin M, Warburton M, Buckler E (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367

    PubMed  Article  PubMed Central  Google Scholar 

  24. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  25. Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges and prospects 1 Methane yield potential. Bio Energy Res 5(4):1027–1042

    CAS  Google Scholar 

  26. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 33:226–231

    Article  Google Scholar 

  27. Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78

    PubMed  Article  CAS  Google Scholar 

  28. Jannink JL, Walsh B (2003) Association mapping in plant populations p 59–68. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB Int, New York

    Google Scholar 

  29. Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–1044

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  30. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the Eigen values of a correlation matrix. Heredity 95:221–227

    PubMed  Article  CAS  Google Scholar 

  31. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E et al (2012) Improved linear mixed models for genome-wide association studies. Nat Method 9:525–526

    Article  CAS  Google Scholar 

  32. Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    PubMed  Article  CAS  Google Scholar 

  33. Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  34. Mikel MA (2006) Availability and analysis of proprietary Dent corn inbred lines with expired US plant variety protection. Crop Sci 46:2555

    Article  Google Scholar 

  35. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Nelson PT, Coles ND, Holland JB, Bubeck DM, Smith S et al (2008) Molecular characterization of Maize inbreds with expired US plant variety protection. Crop Sci 48:1673

    Article  Google Scholar 

  38. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654

    PubMed  Article  CAS  Google Scholar 

  39. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z et al (2014) The genetic architecture of maize height. Genetics 196(4):1337–1356

  40. Pettem F (1956) Dwarfs. Maize genetics cooperation. Newsletter 30:9–10

    Google Scholar 

  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    PubMed  CAS  PubMed Central  Google Scholar 

  42. R development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  43. Rath J, Heuwinkel H, Herrmann A (2013) Specific biogas yield of maize can be predicted by the interaction of four biochemical constituents. BioEnergy Res 6(3):939–952

    Article  CAS  Google Scholar 

  44. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    PubMed  CAS  Google Scholar 

  45. Revilla P, Malvar RA, Cartea ME, Soengas P, Ordás A (2002) Heterotic relationships among European maize inbreds. Euphytica 126:259–264

    Article  Google Scholar 

  46. Revilla P, Soengas P, Cartea ME, Malvar RA, Ordás A (2003) Isozyme variability among European maize populations and the introduction of maize in Europe. Maydica 48:141–152

    Google Scholar 

  47. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    PubMed  Article  CAS  Google Scholar 

  48. Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of Maize inbreds (Zea mays L.). Genetics 192:715–728

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE et al (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387

    PubMed  Article  Google Scholar 

  50. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55

    PubMed  Article  PubMed Central  Google Scholar 

  51. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. Salvi S, Castelletti S, Tuberosa R (2009) An updated consensus map for flowering time QTLs in maize. Maydica 54:501

    Google Scholar 

  53. SAS Institute (2011) Release 9.3. SAS Inst., Cary, NC, USA

  54. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    PubMed  Article  CAS  Google Scholar 

  55. Truntzler M, Ranc N, Sawkins M, Nicolas S, Manicacci D, Lespinasse D, Ribière V, Galaup P, Servant F, Muller C et al (2012) Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theor Appl Genet 125(4):731–747

    PubMed  Article  CAS  Google Scholar 

  56. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    PubMed  Article  PubMed Central  Google Scholar 

  57. Van Inghelandt D, Melchinger AE, Martinant J-P, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56

    PubMed  Article  PubMed Central  Google Scholar 

  58. VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    PubMed  Article  CAS  Google Scholar 

  59. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinf 8:49

    Article  Google Scholar 

  60. Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Article  Google Scholar 

  61. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to all who made possible the gathering of their inbred lines to our panels. In particular, Mark Millard from United States Department of Agriculture North Central Regional Plant Introduction Station (NCRPIS) of Ames, USA; Natalia de Leon from University of Wisconsin, USA; Geert Kleijer from Agroscope Changins-Wädenswil of Nyon (ETH Zurich) Switzerland; Wolfgang Schipprack from Universität Hohenheim (UH) of Eckartsweier, Germany; Rita Redaelli from Unita Di Ricerca per la Maiscoltura of Bergamo (ISC), Italy; Amando Ordás from Misión Biológica de Galicia of Pontevedra (CSIC), Spain; Ángel Álvarez from Estacion Experimental de Aula Dei of Zaragoza, Spain; José Ignacio Ruiz de Galarreta from Centro Neiker de Arkaute of Vitoria, Spain; colleagues from Centro de Investigaciones Agrarias de Mabegondo (CIAM), Spain and colleagues from Institut National de la Rercherche Agronomique of (INRA) Saint Martin de Hinx, France. This research was jointly supported as “Cornfed project” by the French National Agency for Research (ANR), the German Federal Ministry of Education and Research (BMBF), and the Spanish ministry of Science and Innovation (MICINN). R. Rincent is jointly funded by Limagrain, Biogemma, KWS, and the French ANRt. L. Moreau, S. Nicolas and A. Charcosset conducted this research in the framework of Amaizing Investissement d’Avenir program. The authors thank the reviewers and the editor for their comments which improved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the countries in which the experiments were performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Charcosset.

Additional information

Communicated by Michael Gore.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rincent, R., Nicolas, S., Bouchet, S. et al. Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theor Appl Genet 127, 2313–2331 (2014). https://doi.org/10.1007/s00122-014-2379-7

Download citation

Keywords

  • Quantitative Trait Locus
  • Linkage Disequilibrium
  • Genome Wide Association Study
  • Flint
  • Association Mapping