An extensive analysis of the African rice genetic diversity through a global genotyping

Abstract

Key message

We present here the first curated collection of wild and cultivated African rice species. For that, we designed specific SNPs and were able to structure these very low diverse species.

Abstract

Oryza glaberrima, the cultivated African rice, is endemic from Africa. This species and its direct ancestor, O. barthii, are valuable tool for improvement of Asian rice O. sativa in terms of abiotic and biotic stress resistance. However, only a few limited studies about the genetic diversity of these species were performed. In the present paper, and for the first time at such extend, we genotyped 279 O. glaberrima, selected both for their impact in current breeding and for their geographical distribution, and 101 O. barthii, chosen based on their geographic origin, using a set of 235 SNPs specifically designed for African rice diversity. Using those data, we were able to structure the individuals from our sample in three populations for O. barthii, related to geography, and two populations in O. glaberrima; these two last populations cannot be linked however to any currently phenotyped trait. Moreover, we were also able to identify misclassification in O. glaberrima as well as in O. barthii and identified new form of O. sativa from the set of African varieties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Albar L, Ndjiondjop M-N, Esshak Z, Berger A, Pinel A, Jones M et al (2003) Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. Theor Appl Genet 107:371–378

    PubMed  Article  CAS  Google Scholar 

  2. Barry MB, Pham JL, Noyer JL, Billot C, Courtois B, Ahmadi N (2007) Genetic diversity of the two cultivated rice species (O. sativa & O. glaberrima) in Maritime Guinea. Evidence for interspecific recombination. Euphytica 154:127–137

    Article  CAS  Google Scholar 

  3. Bezançon G (1993) Le riz cultivé d’origine Africaine Oryza glaberrima Steud, et les formes sauvages et adventices apparentées : diversité, relations génétiques et domestication

  4. Billot C, Droc G, Courtois B, Farouk A, Ahmadi N, Clément G et al (2007) HaplOryza—SNP analysis of the genetic diversity along the rice genome. http://www.generationcp.org/communications/programme-publications/project-briefs/doc_download/78-2006-executive-summaries

  5. Dramé KN, Sanchez I, Gregorio G, Ndjiondjop M-N (2011) Suitability of a selected set of simple sequence repeats (SSR) markers for multiplexing and rapid molecular characterization of African rice (Oryza glaberrima Steud.). Afr J Biotechnol 10:6675–6685

    Google Scholar 

  6. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    PubMed  Article  CAS  Google Scholar 

  7. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50

    CAS  Google Scholar 

  8. Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O et al (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185:1425–1440

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. Glaszmann JC (1988) Geographic pattern of variation among Asian native rice cultivars (Oryza sativa L.) based on fifteen isozyme loci. Genome 30(5):782–792

    Article  Google Scholar 

  11. Gridley HE, Jones MP, Wopereis-Pura M (2002) Development of new rice for Africa (NERICA) and participatory varietal selection. In: Breeding rainfed rice for drought-prone environments: integrating conventional and participatory plant breeding in South and Southeast Asia: proceedings of a DFID Plant Sciences Research Programme/IRRI Conference, pp 12–15

  12. Gutiérrez AG, Carabalí SJ, Giraldo OX, Martínez CP, Correa F, Prado G et al (2010) Identification of a Rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines. BMC Plant Biol 10:6

    PubMed  Article  PubMed Central  Google Scholar 

  13. He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X et al (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. Huang P, Molina J, Flowers JM, Rubinstein S, Jackson SA, Purugganan MD et al (2012) Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view. Mol Ecol 21:4593–4604

    PubMed  Article  Google Scholar 

  15. Li H, Durbin R (2009) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  Article  PubMed Central  Google Scholar 

  17. Li Z-M, Zheng X-M, Ge S (2011) Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet 123:21–31

    PubMed  Article  Google Scholar 

  18. Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci 99:16360–16365

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y (2012) Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genom 13:S8

    Google Scholar 

  20. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  22. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB et al (2010) Flapjack–graphical genotype visualization. Bioinformatics 26:3133–3134

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. Murray SS (2004) Searching for the origins of African rice domestication. Antiquity 78

  25. Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, Ghesquière A, Santoni S, David J, Glemin S (2014) Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (O. glaberrima). Mol Ecol. doi:10.1111/mec.12738

  26. Nuijten E, van Treuren R, Struik PC, Mokuwa A, Okry F, Teeken B et al (2009) Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers’ fields. PLoS ONE 4:e7335

    PubMed  Article  PubMed Central  Google Scholar 

  27. Orjuela J, Thiémélé D, Kolade O, Chéron S, Ghesquière A, Albar L (2013) A recessive resistance to Rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defence mechanisms. Mol Plant Microbe Interact 26(12):1455–1463

  28. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Genetic diversity of cultivated tropical plants, pp 43–76

  29. Portères R (1962) Primary cradles of agriculture in the African continent. J Afr Hist 3:195–210

    Article  Google Scholar 

  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Sano Y (1990) The genic nature of gamete eliminator in rice. Genetics 125:183–191

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  34. Semon M, Nielsen R, Jones MP, McCouch SR (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. Thiémélé D, Boisnard A, Ndjiondjop M-N, Chéron S, Séré Y, Aké S et al (2010) Identification of a second major resistance gene to Rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima. Theor Appl Genet 121:169–179

    PubMed  Article  Google Scholar 

  37. Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W et al (2011) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    Article  Google Scholar 

  38. Vaughan DA, Kadowaki K, Kaga A, Tomooka N (2005) On the phylogeny and biogeography of the genus oryza. Breed Sci 55:113–122

    Article  CAS  Google Scholar 

  39. Vaughan DA, Lu B-R, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408

    Article  CAS  Google Scholar 

  40. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    PubMed  Article  PubMed Central  Google Scholar 

  41. Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors want to thank Dr MN Ndjiondjop from AfricaRice Center (Cotonou, Benin) for her help in the African rice accessions choice, Dr Laurence Albar and Valérie Poncet for useful discussions, Mme Christine Tranchant for her informatics support, and Dr Timothy Tranbarger for his help in English corrections. All the analyses were performed on the Bioinformatics platform from IRD (http://bioinfo.ird.fr). This project was supported by a Grant from Agropolis Foundation (ArCad program) and from GRiSP project (MENERGEP NewFrontier program).

Conflict of interest

The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to François Sabot.

Additional information

J. Orjuela and F. Sabot contributed equally to the work.

Communicated by Takuji Sasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1. STRUCTURE analysis for 279 O. glaberrima, 101 O. barthii accessions and 54 O. sativa estimated from 235 SNP loci, from K = 2 to K = 6.

Supplemental Fig. 2. Plots of log-likelihood and ΔK, from STRUCTURE analysis of the full set of sampled O. sativa, O. glaberrima and O. barthii (a, b); only for African accessions (c, d); O. barthii (e, f) and O. glaberrima (g, h).

Supplemental Fig. 3. STRUCTURE analysis for 266 O. glaberrima and 101 O. barthii accessions estimated from 235 SNP loci, from K = 2 to K = 6.

Supplemental Fig. 4. a STRUCTURE analysis estimated from 235 SNP loci for 101 O. barthii accessions, from K = 2 to K = 8. b Relationship between O. barthii accessions based on 70 % of ancestry between the 3 populations.

Supplemental Fig. 5. STRUCTURE analysis estimated from 235 SNP loci for 266 O. glaberrima, from K = 2 to K = 7.

Supplemental Table 1. Individual accessions used in the bulked sequencing.

Supplemental Table 2. Position and nature of the 384 SNPs used in the present study. The positions are based on the Oryza sativa ssp japonica cv Nipponbare MSU 6.1 sequence.

Supplemental Table 3. Origin, names and synonymic names of the plant material used in the current study. The accessions used in Li et al. (2011) are shown.

Supplementary material 1 (PDF 945 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orjuela, J., Sabot, F., Chéron, S. et al. An extensive analysis of the African rice genetic diversity through a global genotyping. Theor Appl Genet 127, 2211–2223 (2014). https://doi.org/10.1007/s00122-014-2374-z

Download citation

Keywords

  • African Species
  • Asian Rice
  • African Rice
  • Clear Geographical Pattern
  • Weedy Form