Skip to main content
Log in

Comparative QTL analysis of root lesion nematode resistance in barley

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu Qamar M, Liu ZH, Faris JD, Chao S, Edwards MC, Lai Z, Franckowiak JD, Friesen TL (2008) A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor Appl Genet 117:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Baldridge G, O’Neill N, Samac D (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Barr AR, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Lance RCM, Lewis J, Jeffries SP, Langridge P (1998) RFLP mapping of a new cereal cyst nematode resistance locus in barley. Plant Breed 117:185–187

    Article  Google Scholar 

  • Bowers JH, Nameth ST, Riedel RM, Rowe RC (1996) Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology 86:614–621

    Article  Google Scholar 

  • Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Brill Academic Publishers, Leiden

    Book  Google Scholar 

  • Christensen AB, Gregersen PL, Olsen CE, Collinge DB (1998) A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol Biol 36:219–227

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dempsey DA, Shah J, Klessig D (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    Article  CAS  Google Scholar 

  • Dowe A, Decker H, Walter AM, Lucke W (1990) Damage caused by wandering root nematodes in winter barley. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 44:95–96

    Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda JB (1981) Quantitative genetics in maize breeding. The Iowa State University Press, Ames/Iowa

    Google Scholar 

  • Hallmann J, Frankenberg A, Paffrath A, Schmidt HS (2007) Occurrence and importance of plant-parasitic nematodes in organic farming in Germany. Nematology 9:869–879

    Article  Google Scholar 

  • Heinekamp T, Kuhlmann M, Lenk A, Strathmann A, Dröge-Laser W (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol Genet Genomics 267:16–26

    Article  CAS  PubMed  Google Scholar 

  • Holgado R, Skau KAO, Magnusson C (2009) Field damage in potato by lesion nematode Pratylenchus penetrans, its association with tuber symptoms and its survival in storage. Nematol Mediterranea 37:25–29

    Google Scholar 

  • Karakousis A, Barr AR, Kretschmer JM, Manning S, Logue SJ, Roumeliotis S, Collins HM, Chalmers KJ, Li CD, Lance RCM, Langridge P (2003) Mapping and QTL analysis of the barley population Galleon × Haruna Nijo. Aust J Agric Res 54:1131–1135

    Article  CAS  Google Scholar 

  • Keil T, Laubach E, Sharma S, Jung C (2009) Screening for resistance in the primary and secondary gene pool of barley against the root-lesion nematode Pratylenchus neglectus. Plant Breed 128:436–442

    Article  Google Scholar 

  • Kimpinski J, Martin RA, Sturz AV (2005) Nematicides increase grain yields in spring wheat cultivars and suppress plant-parasitic and bacterial-feeding nematodes. J Nematol 37:473–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koenig J, Perovic D, Kopahnke D, Ordon F (2013) Development of an efficient method for assessing resistance to the net type of net blotch (Pyrenophora teres f. teres) in winter barley and mapping of quantitative trait loci for resistance. Mol Breed (Published online: 21 June 2013)

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175

    Google Scholar 

  • Kumar AR, Kumar N, Poornima K, Soorianathasundaram K (2008) Screening of in vitro derived mutants of banana against nematodes using bio-chemical parameters. Am Eurasian J Sustain Agric 2:271–278

    CAS  Google Scholar 

  • Liu ZH, Faris JD, Edwards MC, Friesen TL (2010) Development of expressed sequence tag (EST)-based markers for genomic analysis of a barley 6H region harboring multiple net form net blotch resistance genes. Plant Genome 3:41–52

    Article  CAS  Google Scholar 

  • Mizukubo T, Adachi H (1997) Effect of temperature on Pratylenchus penetrans development. J Nematol 29:306–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody EH, Lownsbery BF, Ahmed JM (1973) Culture of the root-lesion nematode Pratylenchus vulnus on carrot disks. J Nematol 5:225–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicol JM, Ortiz-Monasterio I (2004) Effects of the root-lesion nematode, Pratylenchus thornei, on wheat yields in Mexico. Nematology 6:485–493

    Article  Google Scholar 

  • Olthof TH (1987) Effects of fumigants and systemic pesticides on Pratylenchus penetrans and potato yield. J Nematol 19:424–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng YL, Moens M (2003) Host resistance and tolerance to migratory plant-parasitic nematodes. Nematology 5:145–177

    Article  Google Scholar 

  • Rivoal R, Cook R (1993) Nematode pests of cereals. In: Evans K, Trudgill D, Webster J (eds) Plant parasitic nematodes in temperate agriculture. CABI Publishing, Wallingford, pp 259–303

    Google Scholar 

  • Rossi CE, Caldari Junior P, Monteiro AR (2000) Occurrence of Pratylenchus vulnus on rose in Minas Gerais State, Brazil. Arquivos do Instituto Biologico 67:147–148

    Google Scholar 

  • SAS (2008) SAS/STAT® 9.2 user’s guide. SAS Institute Inc., Cary, NC, USA

  • Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sharma S, Kopisch-Obuch FJ, Keil T, Laubach E, Stein N, Graner A, Jung C (2011) QTL analysis of root-lesion nematode resistance in barley: 1 Pratylenchus neglectus. Theor Appl Genet 122:1321–1330

    Article  PubMed  Google Scholar 

  • Sijmons P, Atkinson H, Wyss U (1994) Parasitic strategies of root nematodes and associated host cell response. Annu Rev Phytopathol 32:235–259

    Article  CAS  Google Scholar 

  • Sitaramaiah K, Pathak KN (1993) Nematodes bacterial disease interaction. In: Khan M (ed) Nematodes interactions. Chapman & Hall, London, pp 232–250

    Chapter  Google Scholar 

  • Smiley RW (2009) Root-lesion nematodes reduce yield of intolerant wheat and barley. Agron J 101:1322–1335

    Article  Google Scholar 

  • Smiley RW (2010) Root-lesion nematodes: biology and management in Pacific Northwest wheat cropping systems. A Pacific Northwest Extension Publication, Oregon State University, University of Idaho, Washington State University, Everett, pp 1–9

    Google Scholar 

  • Soomro MH, Munir A, Ahmad I (1995) Prevalence of plant parasitic nematodes in potato fields of Pakistan. Research and development of potato production in Pakistan. Pak-Swiss Potato Development Project, Pakistan Agricultural Research Council, Islamabad, pp 130–139

    Google Scholar 

  • Suneetha V, Kishore R, Mishra B, Chaubey P (2011) An overview of screening and tentative optimization of microbial xylanase from soil samples collected from Chittoor paper industry. Indian J Fundam Appl Life Sci 1:173–177

    Google Scholar 

  • Talavera M, Vanstone VA (2001) Monitoring Pratylenchus thornei densities in soil and roots under resistant (Triticum turgidum durum) and susceptible (Triticum aestivum) wheat cultivars. Phytoparasitica 29:29–35

    Article  Google Scholar 

  • Taylor SP, Hollaway GJ, Hunt CH (2000) Effect of field crops on population densities of Pratylenchus neglectus and P. thornei in Southeastern Australia; part 1: P. neglectus. J Nematol 32:591–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Thompson JP, Seymour NP (2011) Inheritance of resistance to root-lesion nematode (Pratylenchus thornei) in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 62:82–93

    Article  Google Scholar 

  • Thompson JP, Zwart RS, Butler D (2012) Inheritance of resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus) in five doubled-haploid populations of wheat. Euphytica 188:209–219

    Article  CAS  Google Scholar 

  • Townshend JL, Stobbs L, Carter R (1989) Ultrastructural pathology of cells affected by Pratylenchus penetrans in alfalfa roots. J Nematol 21:530–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Valette C, Andary C, Geiger JP, Sarah JL, Nicole M (1998) Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • van Ooijen JW (2006) Joinmap 4: software for the calculation of genetic linkage maps in experimental populations (http://dendrome.ucdavis.edu/resources/tooldocs/joinmap/JM4manual.pdf)

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206–227

    Article  Google Scholar 

  • Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079

    Article  CAS  Google Scholar 

  • Williams J, Taylor P, Bogacki P, Pallotta M, Bariana S, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Schmitt M, Hawes MC (2000) Species-dependent effects of border cell and root tip exudates on nematode behavior. Phytopathology 90:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2005) Identification of quantitative trait loci for resistance to two species of root-lesion nematode (P. thornei and P. neglectus) in wheat. Aust J Agric Res 56:345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Bärbel Wohnsen, Cay Kruse, Ines Schütt and Claudia Weißleder for their excellent technical assistance. This work was financially supported by the BLE grant No. 28-1-41.030-06. A. Galal is supported by a scholarship from the Egyptian Ministry of Higher Education and the Faculty of Agriculture, Kafrelsheikh University, Egypt.

Conflict of interest

I declare that there have been no involvements that might raise the question of bias in the work reported or in the conclusions, implications, or opinions stated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jung.

Additional information

Communicated by A. Graner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galal, A., Sharma, S., Abou-Elwafa, S.F. et al. Comparative QTL analysis of root lesion nematode resistance in barley. Theor Appl Genet 127, 1399–1407 (2014). https://doi.org/10.1007/s00122-014-2307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2307-x

Keywords

Navigation