Skip to main content

Advertisement

Log in

Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Cruciferin (cru) and napin (nap) were negatively correlated and the cru/nap ratio was closely negative correlated with glucosinolate content indicating a link between the two biosynthetic pathways.

Abstract

Canola-type oilseed rape (Brassica napus L.) is an economically important oilseed crop in temperate zones. Apart from the oil, the canola protein shows potential as a value-added food and nutraceutical ingredient. The two major storage protein groups occurring in oilseed rape are the 2 S napins and 12 S cruciferins. The aim of the present study was to analyse the genetic variation and the inheritance of napin and cruciferin content of the seed protein in the winter oilseed rape doubled haploid population Express 617 × R53 and to determine correlations to other seed traits. Seed samples were obtained from field experiments performed in 2 years at two locations with two replicates in Germany. A previously developed molecular marker map of the DH population was used to map quantitative trait loci (QTL) of the relevant traits. The results indicated highly significant effects of the year and the genotype on napin and cruciferin content as well as on the ratio of cruciferin to napin. Heritabilities were comparatively high with 0.79 for napin and 0.77 for cruciferin. Napin and cruciferin showed a significant negative correlation (−0.36**) and a close negative correlation of the cru/nap ratio to glucosinolate content was observed (−0.81**). Three QTL for napin and two QTL for cruciferin were detected, together explaining 47 and 35 % of the phenotypic variance. A major QTL for glucosinolate content was detected on linkage group N19 whose confidence interval overlapped with QTL for napin and cruciferin content. Results indicate a relationship between seed protein composition and glucosinolate content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aluko RE, McIntosh T (2001) Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. J Sci Food Agric 81:391–396

    Article  CAS  Google Scholar 

  • Barciszewski J, Szymanski M, Haertlé T (2000) Minireview: analysis of rape seed napin structure and potential roles of the storage protein. J Prot Chem 19:249–254

    Article  CAS  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal: a review. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crouch ML, Sussex IM (1981) Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153:64–74

    Article  PubMed  CAS  Google Scholar 

  • Dimov Z, Suprianto E, Hermann F, Möllers C (2012) Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and development of NIRS calibrations. Plant Breed 131:361–368

    Article  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerström M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: b2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    Article  PubMed  CAS  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulphur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581

    Article  PubMed  CAS  Google Scholar 

  • Harloff H-J, Lemcke S, Mittasch J, Frolov A, Guo WuJ, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124:957–969

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    Article  PubMed  CAS  Google Scholar 

  • Höglund AS, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rapeseed embryo. Plant Physiol 98:509–515

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang AHC (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus L.) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  CAS  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d’Andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268–3284

    Article  PubMed  CAS  Google Scholar 

  • Josefsson LG, Lenman M, Ericson ML, Rask L (1987) Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. J Biol Chem 262:12196–12201

    PubMed  CAS  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H, Imamura J (1994) Effects of an antisense napin gene on storage compounds in transgenic Brassica napus seeds. Plant Mol Biol 26:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H, Imamura J (1995) Improvement of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theor Appl Genet 91:627–631

    Article  PubMed  CAS  Google Scholar 

  • Leckband G, Frauen M, Friedt W (2002) NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition. Food Res Int 35:273–278

    Article  CAS  Google Scholar 

  • Lickfett T, Matthäus B, Velasco L, Möllers C (1999) Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply. Eur J Agron 11:293–299

    Article  CAS  Google Scholar 

  • Malabat C, Sanchez-Vioque R, Rabiller C, Gueguen J (2001) Emulsifying and foaming properties of native and chemically modified peptides from the 2S and 12S proteins of rapeseed (Brassica napus L.). J Am Oil Chem Soc 78:235–241

    Article  CAS  Google Scholar 

  • Malabat C, Atterby H, Chaudhry Q, Renard M, Guéguen J (2003) Genetic variability of rapeseed protein composition. In: Proceedings of the 11th international rapeseed conference, vol I, Kopenhagen, pp 205–208

  • Müntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    Article  PubMed  Google Scholar 

  • Nagel M, Rosenhauer M, Willner E, Snowdon RJ, Friedt W, Börner A (2011) Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping. Plant Gen Resour 9:260–263. doi:10.1017/s1479262111000372

    Article  CAS  Google Scholar 

  • Neumann GM, Condron R, Thomas I, Polya GM (1996a) Purification and sequencing of yellow mustard seed napin small and large chains that are phosphorylated by plant calcium-dependent protein kinase and are calmodulin antagonists. Plant Sci 119:49–66

    Article  CAS  Google Scholar 

  • Neumann GM, Condron R, Thomas I, Polya GM (1996b) Purification and sequencing of multiple forms of Brassica napus seed napin small chains that are calmodulin antagonists and substrates for plant calcium-dependent protein kinase. Biochim Biophys Acta Prot Struc Mol Enzym 1295:23–33

    Article  Google Scholar 

  • Neumann GM, Condron R, Thomas I, Polya GM (1996c) Purification and sequencing of multiple forms of Brassica napus seed napin large chains that are calmodulin antagonists and substrates for plant calcium-dependent protein kinase. Biochim Biophys Acta Prot Struc Mol Enzym 1295:34–43

    Article  Google Scholar 

  • Ohlson R, Anjou K (1979) Rapeseed protein products. J Am Oil Chem Soc 56:431–437

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Google Scholar 

  • Polya GM (2003) Protein and non-protein protease inhibitors from plants. Stud Nat Prod Chem 29:567–641

    Article  CAS  Google Scholar 

  • Raab B, Leman H, Schwenke KD, Kozlowska H (1992) Comparative study of the protein patterns of some rapeseed (Brassica napus L.) varieties by means of polyacrylamide gel electrophoresis and high performance liquid chromatography. Nahrung 36:239–247

    Article  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by QTL mapping. Genetics 179:1547–1558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rasband WS (2011) ImageJ (Version 1.45) Image processing and analysis in Java. US National Institutes of Health, Bethesda. http://rsb.info.nih.gov/ij

  • Rödin J, Sjödahl S, Josefsson LG, Rask L (1992) Characterization of a Brassica napus gene encoding a cruciferin subunit: estimation of sizes of cruciferin gene families. Plant Mol Biol 20:559–563

    Article  PubMed  Google Scholar 

  • Schatzki J, Allam M, Klöppel C, Nagel M, Börner A, Möllers C (2013a) Genetic variation for secondary seed dormancy and seed longevity in a set of black-seeded European winter oilseed rape cultivars. Plant Breed 132:174–179

    Article  Google Scholar 

  • Schatzki J, Schoo B, Ecke W, Herrfurth C, Feussner I, Becker HC, Möllers C (2013b) Mapping of QTL for secondary seed dormancy and germination rate in a winter oilseed rape doubled haploid population. Theor Appl Genet 126:2405–2415

    Article  PubMed  Google Scholar 

  • Schnug E, Kallweit P (1987) Ergebnisse eines Ringversuches zur röntgenfluoreszenzanalytischen Bestimmung des Gesamtglucosinolatgehaltes von Rapssamen. Eur J Lipid Sci Technol 89:377–381

    CAS  Google Scholar 

  • Schwenke KD, Mothes R, Dudek S, Görnitz E (2000) Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: chemical and conformational aspects. J Agric Food Chem 48:708–715

    Article  PubMed  CAS  Google Scholar 

  • Scofield S, Crouch ML (1987) Nucleotide sequence of a member of the napin storage protein family from Brassica napus. J Biol Chem 262:12202–12208

    PubMed  CAS  Google Scholar 

  • Sosulski FW (1979) Organoleptic and nutritional effects of phenolic compounds on oilseed protein products: a review. J Am Oil Chem Soc 56:711–714

    Article  CAS  Google Scholar 

  • Tabe L, Hagan N, Higgins TJV (2002) Plasticity of seed protein composition in response to nitrogen and sulfur availability. Curr Opin Plant Biol 5:212–217

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Torrekens S, Vanleuven F, Osborn RW, Vanderleyden J, Cammue BPA, Broeckaert WF (1992) A new family of basic cysteine-rich plant anti-fungal proteins from Brassicaceae species. FEBS Lett 316:233–240

    Article  Google Scholar 

  • Uppström B (1995) Seed chemistry. In: Kimber D, McGregor DI (eds) Brassica oilseeds—production and utilization. CAB International, Wallingford, pp 217–242

    Google Scholar 

  • Utz HF (2011) PLABSTAT (Version 3A), a computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart. (http://www.uni-hohenheim.de/ipspwww/soft.html)

  • Wanasundara JPD (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51:635–677

    Article  PubMed  CAS  Google Scholar 

  • Withana-Gamage TS, Hegedus DD, Qiu X, Wanasundara JPD (2011) In silico homology modeling to predict functional properties of cruciferin. J Agric Food Chem 59:12925–12938

    Article  PubMed  CAS  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Wu J, Muir AD (2008) Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J Food Sci 73:210–216

    Article  CAS  Google Scholar 

  • Yang J, Hu CC, Ye XZ, Zhu ZH, Zhu ZX, Zhu J (2009) QTL Network-2.1 user manual. Zhejiang University, Hangzhou. (http://ibi.zju.edu.cn/software/qtlnetwork/download.htm)

  • Yoshie-Stark Y, Wada Y, Schott M, Wäsche A (2006) Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LTW Food Sci Technol 39:503–512

    CAS  Google Scholar 

  • Zhao F, Evans EJ, Bilsborrow PE, Syers JK (1993) Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L.). J Sci Food Agric 63:29–37

    Article  CAS  Google Scholar 

  • Zum Felde T, Becker HC, Möllers C (2006) Genotype x environment interactions, heritability, and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support given by the German Federal Ministry of Education and Research (BMBF) FKZ 0315211C is gratefully acknowledged.

Conflict of interest

None of the authors have any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Möllers.

Additional information

Communicated by I. Parkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatzki, J., Ecke, W., Becker, H.C. et al. Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theor Appl Genet 127, 1213–1222 (2014). https://doi.org/10.1007/s00122-014-2292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2292-0

Keywords