Skip to main content

Advertisement

Log in

Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI.

Abstract

Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred line

F1 :

Filial 1

F2 :

Filial 2

CIM:

Composite interval mapping

QTL:

Quantitative trait loci

REML:

Restricted maximum likelihood

AUDPC:

Area under disease progress curve

LOD:

Logarithm of the odds

References

  • Ali F, Yan J (2012) Disease resistance in maize and the role of molecular breeding in defending against global threats. J Integr Plant Biol 54:134–151

    Article  PubMed  CAS  Google Scholar 

  • Balzarini M, Milligan S (2003) Best linear unbiased prediction (BLUP) for genotype performance. In: Kang MS (ed) Handbook of Formulas and Software for Plant Geneticists and Breeders. The Haworth Press Inc, New York, pp 181–191

    Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonamico NC, Di Renzo MA, Ibañez MA, Borghi ML, Díaz DG, Salerno JC, Balzarini MG (2012) QTL analysis of resistance to Mal de Río Cuarto disease in maize using recombinant inbred lines. J Agric Sci 150:619

    Article  CAS  Google Scholar 

  • Cannon EKS, Birkett SM, Braun BL, Kodavali S, Jennewein DL, Yilmaz A, Antonescu V, Antonescu C, Harper LC, Gardiner JM, Schaeffer ML, Campbell DA, Andorf CA, Andorf C, Lisch D, Koch KE, McCarty DR, Quackenbush J, Grotewold E, Lushbough CM, Sen TZ, Lawrence CJ (2011) POPcorn: an online resource providing access to distributed and diverse maize project data. Int J Plant Genomics 2011:Article ID 923035

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clewer AG, Scarisbrick DH (2001) Practical statistics and experimental design for plant and crop science. Wiley, Chichester

    Google Scholar 

  • Coaker GL (2003) Genetic and biochemical characterization of resistance to bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. Ph.D. Dissertation, The Ohio State University

  • Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F (2012) The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS ONE 7:e39169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Souza IRP, Schuelter AR, Guimaraes CT, Schuster I, De Oliveira E, Redinbaugh M (2008) Mapping QTL contributing to SCMV resistance in tropical maize. Hereditas 145:167–173

    Article  Google Scholar 

  • Di Renzo MA, Bonamico NC, Diaz DG, Ibanez MA, Faricelli ME, Balzarini MG, Salerno JC (2004) Microsatellite markers linked to QTL for resistance to Mal de Rio Cuarto disease in Zea mays L. J Agric Sci 142:289–295

    Article  CAS  Google Scholar 

  • Diaz-Pendon J, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda M (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Li H, Wang Y, Zhao R, Zhang X, Chen J, Xia Z, Wu J (2012) Fine mapping of Rscmv2, a major gene for resistance to sugarcane mosaic virus in maize. Mol Breeding 30:1593–1600

    Article  CAS  Google Scholar 

  • Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F, Courtois B, Reynaud B, Hamon P (2005) Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet 111:347–359

    Article  PubMed  CAS  Google Scholar 

  • Dussle CM, Melchinger AE, Kuntze L, Stork A, Luebberstedt T (2000) Molecular mapping and gene action of Scm1 and Scm2, two major QTL contributing to SCMV resistance in maize. Plant Breed 119:299–303

    Article  CAS  Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  PubMed  CAS  Google Scholar 

  • Gomez P, Rodriguez-Hernandez AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22

    Article  Google Scholar 

  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    Article  CAS  Google Scholar 

  • Hull R (2002) Matthew’s Plant Virology. Academic Press, San Diego

    Google Scholar 

  • Hunt RE, Nault LR, Gingery RE (1988) Evidence for infectivity of Maize chlorotic dwarf virus and for a helper component in its leafhopper transmission. Phytopathol 78:499–504

    Article  Google Scholar 

  • Ingvardsen CR, Xing Y, Frei UK, Luebberstedt T (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. Theor Appl Genet 120:1621–1634

    Article  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jones MW, Redinbaugh MG, Anderson RJ, Louie R (2004) Identification of quantitative trait loci controlling resistance to Maize chlorotic dwarf virus. Theor Appl Genet 110:48–57

    Article  PubMed  CAS  Google Scholar 

  • Jones MW, Redinbaugh MG, Louie R (2007) The Mdm1 locus and maize resistance to Maize dwarf mosaic virus. Plant Dis 91:185–190

    Article  CAS  Google Scholar 

  • Jones E, Chu W, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breed 24:165–176

    Article  CAS  Google Scholar 

  • Jones MW, Boyd EC, Redinbaugh MG (2011) Responses of maize (Zea mays L.) near isogenic lines carrying Wsm1, Wsm2 and Wsm3 to three viruses in the Potyviridae. Theor Appl Genet 123:729–740

    Article  PubMed  CAS  Google Scholar 

  • Kang B, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Article  PubMed  CAS  Google Scholar 

  • Kao CH, Zeng ZB (2002) Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 160:1243–1261

    PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res. doi:10.1101/gr.092759.109

    PubMed Central  PubMed  Google Scholar 

  • Kyetere DT, Ming R, McMullen MD, Pratt RC, Brewbaker J, Musket T (1999) Genetic analysis of tolerance to maize streak virus in maize. Genome 42:20–26

    Article  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  PubMed  CAS  Google Scholar 

  • Lapierre H, Signoret PA (2004) Viruses and virus diseases of Poaceae (Gramineae). INRA ED, Paris

    Google Scholar 

  • Lazaro-Mixteco PE, Dinkova TD (2012) Identification of proteins from cap-binding complexes by mass spectrometry during maize (Zea mays L.) germination. J Mex Chem Soc 56:36–50

    CAS  Google Scholar 

  • Loesch PJ, Zuber MS (1967) An inheritance study of resistance to maize dwarf mosaic virus in corn (Zea Mays L). Agron J 59:423–426

    Article  Google Scholar 

  • Louie R (1986) Effects of genotype and inoculation protocols on resistance evaluation of maize to maize dwarf mosaic virus strains. Phytopathol 76:769–773

    Article  Google Scholar 

  • Louie R (1995) Vascular puncture of maize kernels for the mechanical transmission of maize white line mosaic virus and other viruses of maize. Phytopathol 85:139–143

    Article  Google Scholar 

  • Louie R, Anderson RJ (1993) Evaluation of maize chlorotic dwarf virus resistance in maize with multiple inoculations by Graminella nigrifrons (Homoptera: Cicadellidae). J Econ Entomol 86:1579–1583

    Google Scholar 

  • Louie R, Knoke JK, Reichard DL (1983) Transmission of maize dwarf mosaic virus with solid-stream inoculum. Plant Dis 67:1328–1331

    Article  Google Scholar 

  • Louie R, Abt JJ, Anderson RJ, Redinbaugh MG, Gordon DT (2000) Maize necrotic streak virus, a new maize virus with similarity to species of the family Tombusviridae. Plant Dis 84:1133–1139

    Article  CAS  Google Scholar 

  • Louie R, Redinbaugh MG, Anderson RJ, Jones MW (2002) Registration of maize germplasm Oh1VI. Crop Sci 42:991–991

    Article  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS ONE 7:e34775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lubberstedt T, Ingvardsen C, Melchinger AE, Xing Y, Salomon R, Redinbaugh MG (2006) Two chromosome segments confer multiple potyvirus resistance in maize. Plant Breed 125:352–356

    Article  Google Scholar 

  • McMullen MD, Louie R (1989) The linkage of molecular markers to a gene controlling the symptom response in maize to Maize dwarf mosaic virus. Mol Plant Microbe Interact 2:309–314

    Article  Google Scholar 

  • McMullen MD, Louie R (1991) Identification of a gene for resistance to wheat streak mosaic virus in maize. Phytopathol 81:624–627

    Article  Google Scholar 

  • McMullen MD, Louie R, Simcox KD, Jones MW (1994) Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant Microbe Interact 7:708–712

    Article  CAS  Google Scholar 

  • Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD (1997) Molecular mapping of a major gene conferring resistance to maize mosaic virus. Theor Appl Genet 95:271–275

    Article  CAS  Google Scholar 

  • Nault LR, Knoke JK (1981) Maize vectors. In: Knoke JK, Gordon DT, Scott GE (eds) Virus and virus-like diseases of maize in the United States. Southern Cooperative Series Bulletin, Wooster, pp 77–84

    Google Scholar 

  • Redinbaugh MG, Pratt RC (2009) Virus resistance. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 251–268

    Chapter  Google Scholar 

  • Redinbaugh MG, Houghton W, Salomon R, Creamer R, Hogenhout SA, Gordon DT, Ackerman J, Meulia T, Seifers DL, Abt JJ, Styer WE, Anderson RJ (2002) Maize fine streak virus, a new leafhopper-transmitted rhabdovirus. Phytopathol 92:1167–1174

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Slykhuis JT (1955) Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to spread of wheat streak mosaic virus. Phytopathol 45:116–128

    Google Scholar 

  • Stewart LR, Haque MA, Jones MW, Redinbaugh MG (2013) Response of maize (Zea mays L.) lines carrying Wsm1, Wsm2, and Wsm3 to the potyviruses Johnsongrass mosaic virus and Sorghum mosaic virus. Molecular Breed 31:289–297

  • Tao YF, Jiang L, Liu QQ, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang BB, Lai JS, Lubberstedt T, Xu ML (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162

    Article  PubMed  Google Scholar 

  • Todd JC, Hoy C, Hogenhout SA, Ammar E, Redinbaugh MG (2010) Plant host range and leafhopper transmission of Maize fine streak virus. Phytopathol 100:1138–1145

    Article  Google Scholar 

  • Truniger V, Nieto C, Gonzalez-Ibeas D, Aranda M (2008) Mechanism of plant eIF4E-mediated resistance against a carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J 56:716–727

    Article  PubMed  CAS  Google Scholar 

  • Uyemoto JK, Bockelman DL, Claflin LE (1980) Severe outbreak of corn lethal necrosis disease in Kansas. Plant Dis 64:99–100

    Article  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0, software for the calculation of genetic linkage maps. Plant Research Int, The Netherlands

    Google Scholar 

  • van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, Software for the calculation of QTL positions on genetic maps. Plant Research Int, The Netherlands

    Google Scholar 

  • Vasquez J, Mora E (2007) Incidence of and yield loss caused by Maize rayado fino virus in maize cultivars in Ecuador. Euphytica 153:339–342

    Article  Google Scholar 

  • Wang G, Chen Y, Zhao J, Li L, Korban SS, Wang F, Li J, Dai J, Xu M (2007) Mapping of defense response gene homologs and their association with resistance loci in maize. J Integr Plant Biol 49:1580–1598

    Article  CAS  Google Scholar 

  • Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK, Kasina M, Mahuku G, Scheets K, Jeffers D (2012) First report of Maize chlorotic mottle virus and Maize lethal necrosis in Kenya. Plant Dis 96:1582–1582

    Article  Google Scholar 

  • Welz HG, Schechert A, Pernet A, Pixley KV, Geiger HH (1998) A gene for resistance to the maize streak virus in the African CIMMYT maize inbred line CML202. Mol Breed 4:147–154

    Article  CAS  Google Scholar 

  • Wisser RJ, Nelson RJ, Balint-Kurti P (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathol 96:120–129

    Article  CAS  Google Scholar 

  • Wu J, Ding J, Du Y, Xu Y, Zhang X (2007) Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to Sugarcane mosaic virus in maize. Euphytica 156:355–364

    Article  CAS  Google Scholar 

  • Xia XC, Melchinger AE, Kuntze L, Lubberstedt T (1999) Quantitative trait loci mapping of resistance to Sugarcane mosaic virus in maize. Phytopathol 89:660–667

    Article  CAS  Google Scholar 

  • Xiao W, Zhao J, Fan S, Li L, Dai J, Xu M (2007) Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor Appl Genet 115:501–508

    Article  PubMed  CAS  Google Scholar 

  • Zambrano JL, Francis MD, Redinbaugh MG (2013) Identification of resistance to Maize rayado fino virus in maize inbred lines. Plant Dis 97:1418–1423

    Article  Google Scholar 

  • Zhang SH, Li XH, Wang ZH, George ML, Jeffers D, Wang FG, Liu XD, Li MS, Yuan LX (2003) QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica 48:307–312

    Google Scholar 

Download references

Acknowledgments

We thank William Belote (Dupont, Stine-Haskell Research Center) for providing a P. maidis colony and to J. Todd (USDA-ARS) for maintaining the insect colonies. We also thank Geoff Parker (Ohio State University) for technical assistance with the SSR genotyping and Brayton Orchard (Ohio State University) for providing the Circos scripts for the QTL graph. JLZ thanks the Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Ecuador for a fellowship to support his Ph.D. study. Salaries and research support were provided in part by State and Federal funds appropriated to the Ohio Agricultural Research and development Center, The Ohio State University.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret G. Redinbaugh.

Additional information

Communicated by Natalia de Leon.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

The US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program (not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 144 kb)

Supplementary material 2 (PPTX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambrano, J.L., Jones, M.W., Brenner, E. et al. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. Theor Appl Genet 127, 867–880 (2014). https://doi.org/10.1007/s00122-014-2263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2263-5

Keywords

Navigation