Advertisement

Theoretical and Applied Genetics

, Volume 127, Issue 1, pp 125–135 | Cite as

Mutations in chicory FEH genes are statistically associated with enhanced resistance to post-harvest inulin depolymerization

  • Nicolas DauchotEmail author
  • Pierre Raulier
  • Olivier Maudoux
  • Christine Notté
  • Pierre Bertin
  • Xavier Draye
  • Pierre Van Cutsem
Original Paper

Abstract

Key message

Nucleotidic polymorphisms were identified in fructan exohydrolases genes which are statistically associated with enhanced susceptibility to post-harvest inulin depolymerization.

Abstract

Industrial chicory (Cichorium intybus L.) root is the main commercial source of inulin, a linear fructose polymer used as dietary fiber. Post-harvest, inulin is depolymerized into fructose which drastically increases processing cost. To identify genetic variations associated with enhanced susceptibility to post-harvest inulin depolymerization and related free sugars content increase, we used a candidate-gene approach focused on inulin and sucrose synthesis and degradation genes, all members of the family 32 of glycoside hydrolases (GH32). Polymorphism in these genes was first investigated by carrying out EcoTILLING on two groups of chicory breeding lines exhibiting contrasted response to post-harvest inulin depolymerization. This allowed the identification of polymorphisms significantly associated with depolymerization in three fructan exohydrolase genes (FEH). This association was confirmed on a wider panel of 116 unrelated families in which the FEH polymorphism explained 35 % of the post-harvest variance for inulin content, 36 % of variance for sucrose content, 18 % for inulin degree of polymerization, 23 % for free fructose content and 22 % for free glucose content. These polymorphisms were associated with significant post-harvest changes of inulin content, inulin chain length and free sugars content.

Keywords

Inulin Fructan Free Sugar Free Glucose Cell Wall Invertase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the Walloon Region (DGARNE-Belgium) for supporting this research (Grant D31-1221).

Conflict of interest

O. M. and C. N. are members of Cosucra-Group Warcoing S.A.

Ethical standards

The authors acknowledge that the experiments described in this paper comply with the current laws of the country in which they were performed.

Supplementary material

122_2013_2206_MOESM1_ESM.pdf (96 kb)
Supplementary material 1 (PDF 96 kb)
122_2013_2206_MOESM2_ESM.pdf (95 kb)
Supplementary material 2 (PDF 95 kb)
122_2013_2206_MOESM3_ESM.pdf (94 kb)
Supplementary material 3 (PDF 93 kb)
122_2013_2206_MOESM4_ESM.pdf (192 kb)
Supplementary material 4 (PDF 191 kb)
122_2013_2206_MOESM5_ESM.pdf (117 kb)
Supplementary material 5 (PDF 117 kb)

References

  1. Arcia PL, Costell E, Tarrega A (2011) Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology. J Dairy Sci 94:2192–2200PubMedCrossRefGoogle Scholar
  2. Baert JRA (1997) The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L.) roots. Ind Crops Prod 6:195–199CrossRefGoogle Scholar
  3. Cadalen T, Morchen M, Blassiau C, Clabaut A, Scheer I, Hilbert JL, Hendriks T, Quillet MC (2010) Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breed 25:699–722CrossRefGoogle Scholar
  4. CGPDB (2013) Lettuce Genome Resource. https://lgr.genomecenter.ucdavis.edu/Home.php. Accessed online 2013/05/20
  5. Clark MJ, Robien K, Slavin JL (2012) Effect of prebiotics on biomarkers of colorectal cancer in humans: a systematic review. Nutr Rev 70:436–443PubMedCrossRefGoogle Scholar
  6. Clausen MR, Bach V, Edelenbos M, Bertram HC (2012) Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. J Agric Food Chem 60:9495–9501PubMedCrossRefGoogle Scholar
  7. Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, Escribano J (2013) Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin NutrGoogle Scholar
  8. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786PubMedCrossRefGoogle Scholar
  9. De Mendiburu F (2010) Agricolae: Statistical Procedures for Agricultural Research Using R (Online) http://tarwi.lamolina.edu.pe/~fmendiburu/. Accessed online 2013/03/05
  10. Di Bartolomeo F, Startek JB, Van den Ende W (2013) Prebiotics to fight diseases: reality or fiction? Phytother ResGoogle Scholar
  11. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353–362PubMedCrossRefGoogle Scholar
  12. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94PubMedCrossRefGoogle Scholar
  13. Gutierrez RA, MacIntosh GC, Green PJ (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci 4:429–438PubMedCrossRefGoogle Scholar
  14. Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28PubMedCrossRefGoogle Scholar
  15. Hendry GAF (1993) Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14CrossRefGoogle Scholar
  16. Leroy G, Grongnet JF, Mabeau S, Corre DL, Baty-Julien C (2010) Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J Sci Food Agric 90:1203–1209PubMedCrossRefGoogle Scholar
  17. Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15PubMedCentralPubMedCrossRefGoogle Scholar
  18. Maroufi A, Van Bockstaele E, De Loose M (2012) Differential expression of fructan 1-exohydrolase genes involved in inulin biodegradation in chicory (Cichorium intybus) cultivars. Aust J Crop Sci 6:1362–1368Google Scholar
  19. Michiels A, Van Laere A, Van den Ende W, Tucker M (2004) Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. J Exp Bot 55:1325–1333PubMedCrossRefGoogle Scholar
  20. Millevoi S, Vagner S (2009) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774PubMedCentralPubMedCrossRefGoogle Scholar
  21. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCentralPubMedCrossRefGoogle Scholar
  22. Muys C, Thienpont C-N, Dauchot N, Maudoux O, Draye X, Van Cutsem P (2013) Integration of AFLPs, SSRs and SNPs markers into a new genetic map of industrial chicory (Cichorium intybus L. va. sativum). Plant Breed. doi: 10.1111/pbr.12113
  23. Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889PubMedCrossRefGoogle Scholar
  24. Nowak B, von Mueffling T, Grotheer J, Klein G, Watkinson BM (2007) Energy content, sensory properties, and microbiological shelf life of German bologna-type sausages produced with citrate or phosphate and with inulin as fat replacer. J Food Sci 72:S629–S638PubMedCrossRefGoogle Scholar
  25. Portes MT, Figueiredo-Ribeiro Rde C, de Carvalho MA (2008) Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. J Plant Physiol 165:1572–1581PubMedCrossRefGoogle Scholar
  26. R Development Core Team (2013) R: A language and environment for statistical coputing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  27. Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, Smeekens S (2006) Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 48:228–237PubMedCrossRefGoogle Scholar
  28. Saengthongpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol 37:93–100CrossRefGoogle Scholar
  29. SPW-Portail de l’Agriculture wallonne (2013) Catalogues nationaux des variétés d’espèces de plantes agricoles et des variétés d’espèces de légumes. http://agriculture.wallonie.be/apps/spip_wolwin/article.php3?id_article=68. Accessed online 2013/05/31
  30. van Arkel J, Vergauwen R, Sevenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer IM (2012) Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). J Plant Physiol 169:1520–1529PubMedCrossRefGoogle Scholar
  31. van den Brink L, Wilting P (2012) Rassenbulletin cichorei. http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-cichorei. Accessed online 2013/05/31
  32. Van den Ende W, Lammens W, Van Laere A, Schroeven L, Le Roy K (2009) Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS J 276:5788–5798PubMedCrossRefGoogle Scholar
  33. Van den Ende W, Michiels A, De Roover J, Van Laere A (2002) Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. Sci World J 2:1281–1295CrossRefGoogle Scholar
  34. Van den Ende W, Michiels A, Van Wonterghem D, Vergauwen R, Van Laere A (2000) Cloning, developmental, and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale. Fructan localization in roots. Plant Physiol 123:71–80PubMedCentralPubMedCrossRefGoogle Scholar
  35. Van den Ende W, Mintiens A, Speleers H, Onuoha A, Van Laere A (1996) The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytol 132:555–563CrossRefGoogle Scholar
  36. Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18PubMedCrossRefGoogle Scholar
  37. Van den Ende W, Van Laere A (2002) Induction of 1-FEH in mature chicory roots appears to be related to low temperatures rather than to leaf damage. Sci World J 2:1750–1761CrossRefGoogle Scholar
  38. Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813CrossRefGoogle Scholar
  39. Van Waes C, Baert J, Carlier L, Van Bockstaele E (1998) A rapid determination of the total sugar content and the average inulin chain length in roots of chicory (Cichorium intybus L). J Sci Food Agric 76(1):107–110Google Scholar
  40. Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Perilleux C, Javaux M, Lutts S (2012) Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4373PubMedCrossRefGoogle Scholar
  41. Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, Van den Ende W (2007) Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol 174:90–100PubMedCrossRefGoogle Scholar
  42. Verhaest M, Van den Ende W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A (2005) X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J 41:400–411PubMedCrossRefGoogle Scholar
  43. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360PubMedCentralPubMedCrossRefGoogle Scholar
  44. Vlaanderen-Landbouw en Visserij (2013) Industriële cichorei: resultaten van rassenproeven. http://lv.vlaanderen.be/nlapps/docs/default.asp?fid=153. Accessed online 2013/05/31

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas Dauchot
    • 1
    Email author
  • Pierre Raulier
    • 2
  • Olivier Maudoux
    • 3
  • Christine Notté
    • 3
  • Pierre Bertin
    • 2
  • Xavier Draye
    • 2
  • Pierre Van Cutsem
    • 1
  1. 1.Research Unit in Plant BiologyUniversity of NamurNamurBelgium
  2. 2.Earth and Life InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Chicoline-CosucraWarcoingBelgium

Personalised recommendations