Skip to main content
Log in

An alternative mechanism for cleistogamy in barley

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cleistogamy in barley is genetically determined by the presence of the recessive allele cly1, but the dominant allele at the linked locus Cly2 is epistatic over cly1. Although the molecular basis for cly1 action is well understood, that of Cly2 is not. Here we show that anther non-extrusion can occur not just when the lodicules fail to expand adequately (a trait which is fully determined by the allelic state at the cly1 locus), but by the premature timing of anthesis before the spike has emerged from the boot. The transcription of HvAP2 at cly1 is unaffected by the timing of anthesis. Where this occurs prematurely, by the time that the spike has emerged from the boot, the lodicules have already become shrunken and have lost the capacity to push the lemma and palea apart. Premature anthesis appears to be governed by a dominant gene, probably Cly2. Of the three phases of development of a non-cleistogamous barley floret (spike emergence from the boot, floret gaping induced by lodicule expansion and anther extrusion), genetic variation is available regarding at least the former two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    Article  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Briggs D (1978) Barley. Chapman and Hall, London

    Book  Google Scholar 

  • Ceccarelli S (1978) Single-gene inheritance of anther extrusion in barley. J Hered 69:210–211

    Google Scholar 

  • Cheignon M (1972) Structural modifications of cell-walls during elongation of stamen filament of Zea mays L. Cr Acad Sci D Nat 275:549

    Google Scholar 

  • Cheignon M, Schaever J, Cornier N (1973) Elongation of stamen filament of graminaceae as growth phenomenon. Cr Acad Sci D Nat 276:319–322

    CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Brûlé-Babel A, Baumann U, Collins NC (2009) Structure–function analysis of the barley genome: the gene-rich region of chromosome 2HL. Funct Integr Genomics 9:67–79

    Article  PubMed  CAS  Google Scholar 

  • Dahleen LS, Morgan W, Mittal S, Bregitzer P, Brown RH, Hill NS (2012) Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley. Plant Breed 131:237–243

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison JS (1996) Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Ann Bot-Lond 77:573–582

    Article  Google Scholar 

  • Honda I, Turuspekov Y, Komatsuda T, Watanabe Y (2005) Morphological and physiological analysis of cleistogamy in barley (Hordeum vulgare). Physiol Plant 124:524–531

    Article  CAS  Google Scholar 

  • Hori K, Kobayashi T, Sato K, Takeda K (2005) QTL analysis of Fusarium head blight resistance using a high-density linkage map in barley. Theor Appl Genet 111:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Sato K, Kobayashi T, Takeda K (2006) QTL analysis of fusarium head blight severity in recombinant inbred population derived from a cross between two-rowed barley varieties. Breed Sci 56:25–30

    Article  CAS  Google Scholar 

  • Kirby EJM, Appleyard M (1981) Cereal development guide. Cereal Unit, Kenilworth

    Google Scholar 

  • Koevenig JL (1973) Floral development and stamen filament elongation in Cleome hassleriana. Am J Bot 60:122–129

    Article  Google Scholar 

  • Komatsuda T, Nakamura I, Takaiwa F, Oka S (1998) Development of STS markers closely linked to the vrs1 locus in barley, Hordeum vulgare. Genome 41:680–685

    CAS  Google Scholar 

  • Kurauchi N, Makino T, Hirose S (1994) Inhieritance of cleistogamy-chasmogamy in barley. Barley Genet Newsl 23:19

    Google Scholar 

  • Lord EM (1981) Cleistogamy—a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449

    Article  Google Scholar 

  • Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjornstad A (2012) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  PubMed  Google Scholar 

  • Ma SM, Wang YF (2004) Molecular strategies for decreasing the gene flow of transgenic plants. Yi Chuan 26:556–559

    PubMed  CAS  Google Scholar 

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ ×  ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    PubMed  CAS  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen GX, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  PubMed  CAS  Google Scholar 

  • Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breed Sci 56:243–252

    Article  Google Scholar 

  • Sameri M, Nakamura S, Nair SK, Takeda K, Komatsuda T (2009) A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet 118:643–652

    Article  PubMed  CAS  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Skinnes H, Semagn K, Tarkegne Y, Maroy AG, Bjornstad A (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129:149–155

    Article  CAS  Google Scholar 

  • Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487

    Article  PubMed  CAS  Google Scholar 

  • Turuspekov Y, Kawada N, Honda I, Watanabe Y, Komatsuda T (2005) Identification and mapping of a QTL for rachis internode length associated with cleistogamy in barley. Plant Breed 124:542–545

    Article  CAS  Google Scholar 

  • Yoshida H (2012) Is the lodicule a petal: molecular evidence? Plant Sci 184:121–128

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Itoh J, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y (2007) superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. Plant Biotechnol J 5:835–846

    Article  PubMed  CAS  Google Scholar 

  • Zeng XC, Zhou X, Zhang W, Murofushi N, Kitahara T, Kamuro Y (1999) Opening of rice floret in rapid response to methyl jasmonate. J Plant Growth Regul 18:153–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Kakeda for useful comments on the manuscript. This research was funded by the Japanese Ministry of Agriculture, Forestry and Fisheries (Genomics for Agricultural Innovation grants no. TRG1004 and Genomics-based Technology for Agricultural Improvement grants no. TRS1002) to T.K. and the Japanese Society for the Promotion of Science (Postdoctoral Fellowship for Foreign Researchers) to N.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Komatsuda.

Additional information

Communicated by P. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2169_MOESM1_ESM.pptx

Supplementary File 1 Spike emergence distance at the anthesis. (A) Measurement of spike emergence distance at the anthesis in F1 plant of SN × MG cross (left) and F1 plant of SN × KNG cross (right). (B) Frequency distribution of spike emergence distance in F2 population of SN × KNG cross. Genotypes for HvAP2/NmuCI are shown in different colors: black bars SN genotype (n = 32), light gray bars F1 genotype (n = 43), and white bars KNG genotype (n = 19). (C) F2 population of SN × MG cross: black bars SN genotype (n = 26), light gray bars F1 genotype (n = 49), and white bars MG genotype (n = 17). (D) F2 population of RIL50 × GP cross: black bars RIL50 genotype (n = 13), light gray bars F1 genotype (n = 30), and white bars GP genotype (n = 19) (PPTX 378 kb)

122_2013_2169_MOESM2_ESM.xls

Supplementary File 2 Spearman correlations between pairs of traits related to cleistogamy measured in the F2 population bred from the cross RIL50 × GP (n = 62)(XLS 20 kb)

122_2013_2169_MOESM3_ESM.xlsx

Supplementary File 3 Hypothetical genotypes contribute to lodicule size and spike emergence, and their overlapping effect on anther extrusion(XLSX 11 kb)

Supplementary File 4 The sequences of PCR primers targeting the cly1 region(XLS 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Ning, S., Pourkheirandish, M. et al. An alternative mechanism for cleistogamy in barley. Theor Appl Genet 126, 2753–2762 (2013). https://doi.org/10.1007/s00122-013-2169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2169-7

Keywords

Navigation