Advertisement

Theoretical and Applied Genetics

, Volume 126, Issue 11, pp 2671–2682 | Cite as

Out of America: tracing the genetic footprints of the global diffusion of maize

  • C. Mir
  • T. Zerjal
  • V. Combes
  • F. Dumas
  • D. Madur
  • C. Bedoya
  • S. Dreisigacker
  • J. Franco
  • P. Grudloyma
  • P. X. Hao
  • S. Hearne
  • C. Jampatong
  • D. Laloë
  • Z. Muthamia
  • T. Nguyen
  • B. M. Prasanna
  • S. Taba
  • C. X. Xie
  • M. Yunus
  • S. Zhang
  • M. L. Warburton
  • A. Charcosset
Original Paper

Abstract

Maize was first domesticated in a restricted valley in south-central Mexico. It was diffused throughout the Americas over thousands of years, and following the discovery of the New World by Columbus, was introduced into Europe. Trade and colonization introduced it further into all parts of the world to which it could adapt. Repeated introductions, local selection and adaptation, a highly diverse gene pool and outcrossing nature, and global trade in maize led to difficulty understanding exactly where the diversity of many of the local maize landraces originated. This is particularly true in Africa and Asia, where historical accounts are scarce or contradictory. Knowledge of post-domestication movements of maize around the world would assist in germplasm conservation and plant breeding efforts. To this end, we used SSR markers to genotype multiple individuals from hundreds of representative landraces from around the world. Applying a multidisciplinary approach combining genetic, linguistic, and historical data, we reconstructed possible patterns of maize diffusion throughout the world from American “contribution” centers, which we propose reflect the origins of maize worldwide. These results shed new light on introductions of maize into Africa and Asia. By providing a first globally comprehensive genetic characterization of landraces using markers appropriate to this evolutionary time frame, we explore the post-domestication evolutionary history of maize and highlight original diversity sources that may be tapped for plant improvement in different regions of the world.

Keywords

Maize Flint Single Nucleotide Polymorphism Marker Sixteenth Century Phylogenetic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Generation Challenge Program (grant 3005.14). We thank Drs. N. Lauter, M. Sawkins, M. Chastanet and C. Welcker for comments on manuscript; and the Banco Português de Germoplasma Vegetal for providing Portuguese material. Genetic dataset from this study is available on the Generation Challenge Program Central Registry website, at http://www.generationcp.org/gcp_central_registry.

Supplementary material

122_2013_2164_MOESM1_ESM.doc (8.4 mb)
Supplementary material 1 (DOC 8644 kb)

References

  1. Anghiera P (1907) De Orbe Novo (1st complete ed. 1530). Leroux, ParisGoogle Scholar
  2. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  3. Campbell MC, Tishkoff SA (2008) African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 9:403–433PubMedCrossRefGoogle Scholar
  4. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463PubMedCrossRefGoogle Scholar
  5. Chacornac-Rault M (2004) Thesis, Museum National d’Histoire NaturelleGoogle Scholar
  6. Chastanet M (1998) Chapter 9. In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 251–282Google Scholar
  7. Desjardins A, McCarthy E, Milho SA (2004) Makka and yu mai: early journeys of Zea mays to Asia National Agricultural Library www.nal.usda.gov/research/maize. Accessed 18 May, 2012
  8. Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  9. Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437PubMedCrossRefGoogle Scholar
  10. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202Google Scholar
  11. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558PubMedCrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Felsenstein J (2005) PHYLIP (Phylogeny inference package). http://evolution.genetics.washington.edu/phylip.html. Accessed 18 May, 2012
  14. Gautier M, Laloë D, Moazami-Goudarzi K (2010) Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS One 5:9Google Scholar
  15. Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JC, Pandey S (eds) The Genetics and Exploitation of Heterosis in Crops. WI ASSA-CSSA-SSSA, Madison, pp 139–148Google Scholar
  16. Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of photoperiod sensitivity within a collection of tropical maize populations. Gen Res Crop Evol 49:471–481CrossRefGoogle Scholar
  17. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:367. doi: 10.1371/journal.pone.0001367 CrossRefGoogle Scholar
  18. Harrisse H (2006) Discovery of North America: a critical, documentary and historic investigation. Martino Publishing, EastfordGoogle Scholar
  19. Heers J (1991) La découverte de l’Amérique. Editions Complexe, BrusselsGoogle Scholar
  20. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  21. Janick J, Caneva G (2005) The first images of maize in Europe. Maydica 50:71–80Google Scholar
  22. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405PubMedCrossRefGoogle Scholar
  23. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103PubMedCrossRefGoogle Scholar
  24. Jombart T, Pontier D, Dufour DA (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341PubMedCrossRefGoogle Scholar
  25. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedCrossRefGoogle Scholar
  26. Juhé-Beaulaton D (1998) Chapter 2 In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 45–67Google Scholar
  27. Lach DF, Van Kley EJ (1994) Asia in the making of Europe. University of Chicago Press, ChicagoGoogle Scholar
  28. Leff B, Ramankutty N, Foley JA (2004) Geographical distribution of the major crops across the world. Global Biogeochemical Cycles 18:GB1009. doi: 10.1029/2003GB002108 CrossRefGoogle Scholar
  29. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128PubMedGoogle Scholar
  30. Madeira Santos ME, Ferraz Torrão MM (1998) Chapter 3 In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 69–83Google Scholar
  31. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  32. Menkir A, Olowolafe MO, Ingelbrecht I, Fawole I, Badu-Apraku B, Vroh BI (2006) Assessment of testcross performance and genetic diversity of yellow endosperm maize lines derived from adapted x exotic backcrosses. Theor Appl Genet 11:90–99CrossRefGoogle Scholar
  33. Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochimical Cycles 22:GB1022. doi: 10.1029/2007GB002947 Google Scholar
  34. Murgia C, Pritchard JK, Kim S, Fassati A, Weiss R (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487PubMedCrossRefGoogle Scholar
  35. Pons O, Chaouche K (1995) Estimation, variance and optimal sampling of gene diversity. II. Diploid locus. Theor Appl Genet 91:122–130CrossRefGoogle Scholar
  36. Portères R (1955) L’introduction du maïs en Afrique. J Agric Trop Bot Appl 2:221–231Google Scholar
  37. Pray C (2006) The Asian Maize Biotechnology Network (AMBIONET): a model for strengthening national agricultural research systems. CIMMYT, MexicoGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  39. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  40. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903PubMedGoogle Scholar
  41. Reif JC, Hamrit S, Heckenberger M, Schipprack Wm, Maurer HP, Bohn M, Melchinger AE (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913PubMedCrossRefGoogle Scholar
  42. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385PubMedCrossRefGoogle Scholar
  43. Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Company, New YorkGoogle Scholar
  44. Timothy DH, Peña BV, Ramirez RE, Brown WL, Anderson E (1961) The races of maize in Chile. Natl Acad Sci - Natl Res Counc publ 847, Washington, DCGoogle Scholar
  45. van Etten J, Hijmans RJ (2010) A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants. PLoS One 5(8):e12060. doi: 10.1371/journal.pone.0012060 PubMedCrossRefGoogle Scholar
  46. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092PubMedCrossRefGoogle Scholar
  47. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253PubMedCrossRefGoogle Scholar
  48. Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open-pollinated varieties, and inbred lines. Crop Sci 48:617–624CrossRefGoogle Scholar
  49. Witcombe JR, Joshi A, Goyal SN (2003) Participatory plant breeding in maize: a case study from Gujarat, India. Euphytica 130:413–422CrossRefGoogle Scholar
  50. Zaide GF, Zaide SM (2004) Philippine History and Government. All-Nations Publishing Company, Quezon CityGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • C. Mir
    • 1
  • T. Zerjal
    • 2
  • V. Combes
    • 1
  • F. Dumas
    • 1
  • D. Madur
    • 1
  • C. Bedoya
    • 3
  • S. Dreisigacker
    • 3
  • J. Franco
    • 4
  • P. Grudloyma
    • 5
  • P. X. Hao
    • 6
  • S. Hearne
    • 3
  • C. Jampatong
    • 7
  • D. Laloë
    • 2
  • Z. Muthamia
    • 8
  • T. Nguyen
    • 6
  • B. M. Prasanna
    • 9
    • 10
  • S. Taba
    • 3
  • C. X. Xie
    • 11
  • M. Yunus
    • 12
  • S. Zhang
    • 11
  • M. L. Warburton
    • 13
  • A. Charcosset
    • 1
  1. 1.Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche AgronomiqueUniversité Paris Sud, Centre National de la Recherche Scientifique (INRA), AgroParisTechGif-sur-YvetteFrance
  2. 2.UMR 1313 Génétique Animale et Biologie Intégrative INRA-AgroParisTechJouy en JosasFrance
  3. 3.Centro International de Mejoramiento de Maíz y Trigo (CIMMYT)Applied Biotechnology CenterMexico, D.F.Mexico
  4. 4.Departamento de Biometria, Facultad de AgronomiaEstadistica y Computacion, Estación Experimental EEMACPaysandúUruguay
  5. 5.Department of AgricultureNakhon Sawan Field Crops Research CenterNakhon SawanThailand
  6. 6.National Maize Research InstituteHanoiVietnam
  7. 7.National Corn and Sorghum Research CenterKasetsart UniversityNakhon RatchasimaThailand
  8. 8.Kenya Agriculture Research InstituteNairobiKenya
  9. 9.Indian Agricultural Research InstituteNew DelhiIndia
  10. 10.CIMMYTNairobiKenya
  11. 11.Chinese Academy of Agricultural SciencesBeijingChina
  12. 12.Indonesian Department of AgricultureBogorIndonesia
  13. 13.United States Department of Agriculture, Corn Host Plant Research Resistance UnitMississippi State UniversityOktibbehaUSA

Personalised recommendations