Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection

An Erratum to this article was published on 04 May 2014

Abstract

Plant height and maturity are two critical traits in sorghum breeding. To develop molecular tools and to identify genes underlying the traits for molecular breeding, we developed 14,739 SNP markers used to genotype the complete sorghum [Sorghum bicolor (L.) Moench] mini core collection. The collection was evaluated in four rainy and three post-rainy season environments for plant height and maturity. Association analysis identified six marker loci linked to height and ten to maturity in at least two environments with at least two SNPs in each locus. Of these, 14 were in close proximity to previously mapped height/maturity QTL in sorghum. Candidate genes for maturity or plant height close to the marker loci include a sugar transporter (SbSUC9), an auxin response factor (SbARF3), an FLC and FT regulator (SbMED12), and a photoperiod response gene (SbPPR1) for maturity and peroxidase 53, and an auxin transporter (SbLAX4) for plant height. Linkage disequilibrium analysis showed that SbPPR1 and SbARF3 were in regions with reduced sequence variation among early-maturing accessions, suggestive of past purifying selection. We also found a linkage disequilibrium block that existed only among the accessions with short plant height in rainy season environments. The block contains a gene homologous to the Arabidopsis flowering time gene, LUMINIDEPENDENS (LD). Functional LD promotes early maturity while mutation delays maturity, affecting plant height. Previous studies also found reduced sequence variations within this gene. These newly-mapped SNP markers will facilitate further efforts to identify plant height or maturity genes in sorghum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breed 21:497–509

    CAS  Article  Google Scholar 

  2. Amador V, Monte E, García-Martínez JL, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343–354

    CAS  PubMed  Article  Google Scholar 

  3. Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA 108:11034–11039

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Aukerman MJ, Lee I, Weigel D, Amasino RM (1999) The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18:195–203

    CAS  PubMed  Article  Google Scholar 

  5. Bhattramakki D, Dong J, Chhabra K, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    CAS  PubMed  Article  Google Scholar 

  6. Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Bowers JE, Abbey C, Anderson S, Chang C, Draye X et al (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Article  Google Scholar 

  10. Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    PubMed Central  PubMed  Article  Google Scholar 

  11. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Casa AM, Pressoir GH, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  13. Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    CAS  PubMed  Article  Google Scholar 

  15. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  PubMed  Article  Google Scholar 

  16. Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Article  Google Scholar 

  18. Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  19. Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    CAS  Article  Google Scholar 

  20. Imura Y, Kobayashi Y, Yamamoto S, Furutani M, Tasaka M, Abe M, Araki T (2012) CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol 53:287–303

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    PubMed Central  PubMed  Article  Google Scholar 

  22. Kebede H, Subadhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    CAS  Article  Google Scholar 

  23. Kim S, Choi K, Park C, Hwang HJ, Lee I (2006) SUPPRESSOR OF FRIGIDA, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18:2985–2998

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    CAS  Article  Google Scholar 

  25. Kong L, Dong L, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    CAS  Article  Google Scholar 

  26. Kristensen BK, Brandt J, Bojsen K, Thordal-Christensen H, Kerby KB, Collinge DB, Mikkelsen JD, Rasmussen SK (1997) Expression of a defence-related intercellular barley peroxidase in transgenic tobacco. Plant Sci 122:173–182

    CAS  Article  Google Scholar 

  27. Lagrimini LM, Bradford S, Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Lagrimini LM, Gingas V, Finger F, Rothstein S, Liu T (1997) Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiol 114:1187–1196

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6:75–83

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:21199–21204

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (Beijing) 25:317–321

    Google Scholar 

  33. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Miller FR, Quinby JR, Cruzado HJ (1968) Expression of known maturity genes of sorghum in temperate and tropical environments. Crop Sci 8:675–677

    Article  Google Scholar 

  35. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    CAS  PubMed  Article  Google Scholar 

  37. Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:16469–16474

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  39. Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  40. Murray SC, Rooney WL, Mitchell SE, Kresovich S (2009) Sweet sorghum diversity and association mapping for Brix and height. Plant Genome 2:48–62

    CAS  Article  Google Scholar 

  41. Nelson JC, Wang S, Wu Y, Li X, Antony G, White FF, Yu J (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics 12:352

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Ng KH, Yu H, Ito T (2009) AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 7(11):e1000251

    PubMed Central  PubMed  Article  Google Scholar 

  43. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    CAS  PubMed  Article  Google Scholar 

  44. Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    CAS  PubMed  Article  Google Scholar 

  45. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    PubMed Central  PubMed  Article  Google Scholar 

  47. Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    CAS  Article  Google Scholar 

  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Quinby JR (1967) The maturity genes of sorghum. Adv Agron 19:267–305

    Article  Google Scholar 

  50. Quinby JR (1974) Sorghum improvement and the genetics of growth. A&M Univ Press, College Station

    Google Scholar 

  51. Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  52. Ramu P, Kassahun B, Senthilvel S, Kumar CA, Jayashree B, Folkertsma RT, Reddy LA, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    CAS  PubMed  Article  Google Scholar 

  53. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  54. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  55. Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  56. Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    CAS  PubMed  Article  Google Scholar 

  57. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    CAS  PubMed  Article  Google Scholar 

  58. Schertz KF, Sumpter NA, Sarkissian IV, Hart GE (1971) Peroxidase regulation by the 3-dwarf height locus in sorghum. J Hered 62:235–238

    CAS  Google Scholar 

  59. Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    CAS  PubMed  Article  Google Scholar 

  60. Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    CAS  PubMed  Article  Google Scholar 

  61. Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CP, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188–198

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    CAS  PubMed  Article  Google Scholar 

  64. Stephens JC, Miller FR, Rosenow DT (1967) Conversion of alien sorghum to early combine types. Crop Sci 7:396

    Article  Google Scholar 

  65. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  66. Upadhyaya HD, Wang Y-H, Sharma S, Singh S (2012a) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55:471–479

    CAS  PubMed  Article  Google Scholar 

  67. Upadhyaya HD, Wang Y-H, Sharma S, Singh S, Hasenstein KH (2012b) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187:401–410

    CAS  Article  Google Scholar 

  68. Wang ML, Zhu C, Barkley NL, Chen Z, Erpelding JE, Murray S, Tesso T, Pederson GA, Yu J (2009) Assessment of genetic diversity and population structure of accessions in the US sweet sorghum germplasm collection. Theor Appl Genet 120:13–23

    PubMed  Article  Google Scholar 

  69. Wang Y-H, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 30:281–292

    Article  Google Scholar 

  70. Wang Y-H, Upadhyaya HD, Burrell AM, Sahraeian SM, Klein RR, Klein PE (2013) Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. Genes, Genomes, Genetics (G3) doi: 10.1534/g3.112.004861

  71. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  72. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Article  Google Scholar 

  73. Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Patricia E. Klein, Robert R. Klein, and A. Millie Burrell for reviewing and the two reviewers for their suggestions to improve the manuscript. The study was supported in part by the International Crops Research Institute for the Semi-Arid Tropics and the University of Louisiana at Lafayette.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments conducted for this study comply with the current laws of India and the United States.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi-Hong Wang.

Additional information

H. D. Upadhyaya and Y.-H. Wang have contributed equally to this work.

Communicated by A. E. Melchinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Upadhyaya, H.D., Wang, YH., Gowda, C.L.L. et al. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126, 2003–2015 (2013). https://doi.org/10.1007/s00122-013-2113-x

Download citation

Keywords

  • Plant Height
  • Sorghum
  • Association Mapping
  • Sweet Sorghum
  • Auxin Response Factor