Skip to main content
Log in

Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The coexistence of both climacteric and non-climacteric genotypes and the availability of a set of genetic and genomic resources make melon a suitable model for genetic studies of fruit ripening. We have previously described a QTL, ETHQB3.5, which induces climacteric fruit ripening in the near-isogenic line (NIL) SC3-5 that harbors an introgression on linkage group (LG) III from the non-climacteric melon accession PI 161375 in the, also non-climacteric cultivar, “Piel de Sapo” genetic background. In the current study, a new major QTL, ETHQV6.3, on LG VI was detected on an additional introgression in the same NIL. These QTLs are capable, individually, of inducing climacteric ripening in the non-climacteric background, the effects of ETHQV6.3 being greater than that of ETHQB3.5. The QTLs interact epistatically, advancing the timing of ethylene biosynthesis during ripening and, therefore, the climacteric responses. ETHQV6.3 was fine-mapped to a 4.5 Mb physical region of the melon genome, probably in the centromeric region of LG VI. The results presented will be of value in the molecular identification of the gene underlying ETHQV6.3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abeles (1992) Ethylene in plant biology, 2nd edn, Academic Press, San Diego

  • Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338

    Article  PubMed  CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  PubMed  CAS  Google Scholar 

  • Barreto GPM, Barreto GP, Fabi J, De Rosso V, Cordenunsi BR, Lajolo FM (2011) Influence of ethylene on carotenoid biosynthesis during papaya postharvesting ripening. J Food Compos Anal 24:620–624

    Article  CAS  Google Scholar 

  • Beaulieu JC, Lea JM (2003) Aroma volatile differences in commercial orange-fleshed cantaloupes, the inbred parental lines and stored fresh-cuts. Proceeding XXVI IHC—Issues and Advances in Postharvest Hort, Prange RK (ed), Acta Hort (ISHS) 628: 809–815

  • Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto PB, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-Independent aspects of fruit ripening. Plant Cell 24:4437–4451

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amor M, Flores B, Latché A, Bouzayen M, Pech JC, Latché A (1999) Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant, Cell Environ 22:1579–1586

    Article  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Chiriboga M-A, Schotsmans WC, Larrigaudière C, Dupille L, Recassens I (2011) How to prevent ripening blockage in 1-MCP-treated “Conference” pears. J Sci Food Agric 91:1781–1788

    Article  PubMed  CAS  Google Scholar 

  • Chung M-Y, Vrebalov J, Alba R, Lee JM, McQuinn R, Chung J-D, Klein P, Giovannoni J (2011) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    Article  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE (2009) A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet 119:741–756

    Article  PubMed  CAS  Google Scholar 

  • Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Zhanjung F, Staub J, Zalapa J, Cuevas H, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert P, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Xu Y, Fukino N, Matsumo S, Garcia-Mas J, MOnforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111

    Article  PubMed  CAS  Google Scholar 

  • Doganlar S, Tanksley SD, Mutschler MA (2000) Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theor Appl Genet 100:249–255

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    Article  PubMed  CAS  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ, Monforte AJ, Obando J, Fernández-Trujillo JP, Martínez JA, Alarcon AL, Alvarez JM, Van Der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker G, Seymour G (2004) Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197

    Article  PubMed  CAS  Google Scholar 

  • Ezura H, Owino WO (2008) Melon ripening and ethylene. Plant Sci 175: 121–129

    Google Scholar 

  • Fernandez-Silva I, Moreno E, Essafi A, Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín-Hernandez AM, Alvarez JM, Monforte AJ (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940

    Article  PubMed  Google Scholar 

  • Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y (2012) Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235:1107–1122

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente MCC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, Pujol M, Nuez F, Bendahmane A, Garcia-Mas J, Picó B (2011) Towards a TILLING platform for functional genomics in Piel de sapo melons. BMC Res Notes 4:289

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-Sanjuan R (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hortic Sci 136:145–154

    CAS  Google Scholar 

  • Guis M, Ben Amor M, Ayub R, Bouzayen M, Pech JC, Latché ABR (1997) Ripening-associated biochemical traits of cantaloupe Charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Hortic Sci 122:748–751

    CAS  Google Scholar 

  • Gur A, Osorio S, Fridman E, Fernie AR, Zamir D (2010) hi2-1, a QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theor Appl Genet 121:1587–1599

    Article  PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  PubMed  CAS  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG et al (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Sharma MK, Kapoor S, Tyagi AK, Sharma A (2012) Transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes provides insight into LeMADS-RIN-regulated ethylene-dependent as well as ethylene-independent aspects of ripening in tomato. Mol Genet Genomics 287:189–203

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Joung J-G, McQuinn R, Chung M-Y, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals the ethylene response factor SlERF6 to play an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D (2008) A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55:301–310

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni J, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, Gonzalez-Ibeas D, Saladié M, Roig C, Deleu W, Picó B, López-Bigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomènech P, Caño-Delgado A (2009) An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics 10:467

    Article  PubMed  Google Scholar 

  • McMurchie EJ, McGlasson WB, Eaks IL (1972) Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breeding 3:239–245

    Article  CAS  Google Scholar 

  • Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, Wangjin L, Kato K, Ushijima K, Nakano R, Inaba A, Bouzayen M, Latche A, Pech J-C, Bennett AB (2007) Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot 58:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Eduardo I, Arus P, Monforte AJ (2008) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hortic Sci 133:139–151

    Google Scholar 

  • Obando-Ulloa JM, Ruiz J, Monforte AJ, Fernández-Trujillo JP (2010) Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chem 118:815–822

    Article  CAS  Google Scholar 

  • Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    Article  CAS  Google Scholar 

  • Périn C, Gomez-Jimenez M, Hagen L, Périn C, Gomez-Jimenez MC, Hagen L, Dogimont C, Pech J-C, Latché A, Pitrat M, Lelièvre JM (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols. Humana Press, Totowa

  • Seymour GB, Taylor JE, Tucker GA (1993) Biochemistry of fruit ripening. Chapman & Hall, London

    Book  Google Scholar 

  • Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Karchi Z, Lewinsohn E (2001) Acetyl-coa: alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J Agric Food Chem 49:794–799

    Article  PubMed  CAS  Google Scholar 

  • Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rombaldi CV (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    Article  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16(Suppl):S181–S189

    PubMed  CAS  Google Scholar 

  • Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. In: Proceedings of the National Academy of Sciences of the United States of America, vol 97, pp 5663–5668

  • Vegas J, Garcia-Mas J, Monforte AJ (2010) Characterization of fruit ripening in the melon near isogenic line SC3-5-1. Proc Cucurbitaceae 2010. Section Breeding and Genetics. ASHA, Alexandria, p 3–7

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannon J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science (New York, NY) 296:343–346

    Article  CAS  Google Scholar 

  • Wang KL-C, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fuensanta Garcia (CRAG) for technical assistance with the plant material. We also thank Maria Angeles Chiriboga and Christian Larrigaudière (UdL-IRTA) for assistance with the ethylene measurements. The work was funded by the Spanish Ministry of Science and Innovation grants AGL2006-12780-C02-01, AGL2009-12698-C02-01 and AGL2009-12698-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Garcia-Mas or Antonio Jose Monforte.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2071_MOESM1_ESM.pdf

Online Resource 1. Graphic genotype of NILs SC3-5 and SC3-5-1. The extent of the introgressions from SC is depicted in red and the PS genetic background in blue. Vertical marks on the top indicate the skeleton of the genetic map according to Fernandez-Silva et al. (2008). The markers used to initially define the introgressions and their position in the genetic map are zoomed below the graphical genotypes (PDF 180 kb)

122_2013_2071_MOESM2_ESM.pdf

Online Resource 2. List of markers used for QTL detection and mapping. The marker type (simple sequence repeat, SSR, or cleaved amplified polymorphic sequence, CAPS); the linkage group (LG); forward and reverse primer sequences; annealing temperature (Ta); concentration of MgCl2 in the PCR reaction; the restriction enzyme used for CAPS markers, and the original references are also shown. An asterisk indicates previously unpublished markers (PDF 55 kb)

122_2013_2071_MOESM3_ESM.pdf

Online Resource 3. Mapping of ETHQV6.3 based on individual recombinant plants from the 2008-F2 progeny test. The markers are indicated at the top of the column. A = SC, B = PS and H = heterozygous. The calculated position of the QTL is indicated with an asterisk below the corresponding markers (PDF 20 kb)

122_2013_2071_MOESM4_ESM.pdf

Online Resource 4. Changes in ethylene production during ripening (days after pollination, DAP) in the lines 8M29 (PS), 8M35 (ETHQB3.5), 8M40 (ETHQV6.3) and 8M31 (ETHQB3.5 + ETHQV6.3) (PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vegas, J., Garcia-Mas, J. & Monforte, A.J. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126, 1531–1544 (2013). https://doi.org/10.1007/s00122-013-2071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2071-3

Keywords

Navigation