Theoretical and Applied Genetics

, Volume 126, Issue 5, pp 1237–1256 | Cite as

Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping

  • Tesfaye Letta
  • Marco Maccaferri
  • Ayele Badebo
  • Karim Ammar
  • Andrea Ricci
  • Jose Crossa
  • Roberto Tuberosa
Original Paper


Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is a devastating disease of durum wheat. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few of them have remained effective against Ug99 (TTKSK race) and other durum-specific Ethiopian races. An association mapping (AM) approach based on 183 diverse durum wheat accessions was utilized to identify resistance loci for stem rust response in Ethiopia over four field-evaluation seasons and artificial inoculation with Ug99 and a mixture of durum-specific races. The panel was profiled with simple sequence repeat, Diversity Arrays Technology and sequence-tagged site markers (1,253 in total). The resistance turned out to be oligogenic, with twelve QTL-tagging markers that were significant (P < 0.05) across three or four seasons. R 2 values ranged from 1.1 to 11.3 %.Twenty-four additional single-marker/QTL regions were found to be significant over two seasons. The AM results confirmed the role of Sr13, previously described in bi-parental mapping studies, and the role of chromosome regions putatively harbouring Sr9, Sr14, Sr17 and Sr28. Three minor QTLs were coincident with those reported in hexaploid wheat and five overlapped with those recently reported in the Sebatel × Kristal durum mapping population. Thirteen single-marker/QTL regions were located in chromosome regions where no Sr genes/QTLs have been previously reported. The allelic variation identified in this study is readily available and can be exploited for marker-assisted selection, thus providing additional opportunities for a more durable stem rust resistance under field conditions.


Simple Sequence Repeat Marker Durum Wheat Association Mapping Hexaploid Wheat Stem Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial contribution of the Beachell-Borlaug International Scholar Initiative to support Tesfaye L. Dugo is gratefully acknowledged.

Supplementary material

122_2013_2050_MOESM1_ESM.ppt (667 kb)
Supplementary material 1 (PPT 667 kb)
122_2013_2050_MOESM2_ESM.xls (484 kb)
Supplementary material 2 (XLS 491 kb)


  1. Admassu B, Lind V, Friedt W, Ordon F (2009) Virulence analysis of Puccinia graminis f. sp. tritici populations in Ethiopia with special consideration of Ug99. Plant Pathol 58:362–369CrossRefGoogle Scholar
  2. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  3. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517PubMedCrossRefGoogle Scholar
  4. Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742CrossRefGoogle Scholar
  5. Badebo A, Gelalcha S, Ammar K, Nachit MM, Abdalla O (2009) Durum wheat research in Ethiopia. In: Proceedings of the 2009 BGRI technical workshop, CIMMYT, Cd. Obregon, Sonora, Mexico, March 17–20, 2009. P 28Google Scholar
  6. Bansal UK, Bossolini E, Miah H, Keller B, Park RF, Bariana HS (2008) Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 164:821–828CrossRefGoogle Scholar
  7. Belaid A (2000) Durum wheat in WANA (West Asia and North Africa): production, trade, and gains from technological change. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges, vol 40., Options MediterraneennesCIHEAM-IAMZ, Zaragoza, pp 35–39Google Scholar
  8. Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella AIN (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47:1955–1963CrossRefGoogle Scholar
  9. Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232PubMedCrossRefGoogle Scholar
  10. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  11. Bradbury P, Parker T, Hamblin MT, Jannink JL (2011) Assessment of power and false discovery rate in genome-wide association studies using the BarleyCAP germplasm. Crop Sci 51:52–59CrossRefGoogle Scholar
  12. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  13. Buntjer JB, Sorensen AP, Peleman JD (2005) Haplotype diversity: the link between statistical and biological association. Trends Plant Sci 10:466–471PubMedCrossRefGoogle Scholar
  14. Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334PubMedCrossRefGoogle Scholar
  15. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedCrossRefGoogle Scholar
  16. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CAR(H)(T)AGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704PubMedCrossRefGoogle Scholar
  17. Ersoz ES, Yu J, Buckler ES (2009) Application of linkage disequilibrium and association mapping in maize. In: Kriz A, Larkins B (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 173–195CrossRefGoogle Scholar
  18. Eversmeyer MG, Kramer CL (2000) Epidemiology of wheat leaf and stem rust in the central Great Plains of the USA. Annu Rev Phytopathol 38:491–513PubMedCrossRefGoogle Scholar
  19. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32PubMedCrossRefGoogle Scholar
  20. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  21. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390CrossRefGoogle Scholar
  22. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  23. Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60:2805–2815PubMedCrossRefGoogle Scholar
  24. Haile JK, Nachit MM, Hammer K, Badebo A, Röder MS (2012) QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breed 30:1479–1493CrossRefGoogle Scholar
  25. Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165PubMedCrossRefGoogle Scholar
  26. Heermann RM, Stoa TE (1956) New durum wheats resistant to 15B. N Dakota Agric Exp Stn Farm Res 18:75–81Google Scholar
  27. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yue J (2007) Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155:361–369CrossRefGoogle Scholar
  28. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Ammar K (2009) Pyramiding slow rusting genes for durable resistance to leaf rust in durum wheat. In: Proceedings of the 2009 BGRI Technical Workshop, CIMMYT, Cd. Obregon, Sonora, Mexico, March 17–20, 2009Google Scholar
  29. Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Pretorius ZA (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp tritici. Plant Dis 91:1096–1099CrossRefGoogle Scholar
  30. Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926CrossRefGoogle Scholar
  31. Jin Y, Szabo L, Rouse M, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within race TTKS lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370CrossRefGoogle Scholar
  32. Kaur S, Francki MG, Forster JW (2012) Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. Plant Biotechnol J 10:125–138PubMedCrossRefGoogle Scholar
  33. Knott DR (1962) The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Can J Agric Sci 42:415–419Google Scholar
  34. Kuchel H, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat I. QTL analysis. Theor Appl Genet 115:1029–1041PubMedCrossRefGoogle Scholar
  35. Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91CrossRefGoogle Scholar
  36. Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797PubMedCrossRefGoogle Scholar
  37. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  38. Maccaferri M, Sanguineti MC, Natoli V, Ortega JLA, Ben Salem M, Bort J, Chenenaoui C, De Ambrogio E, del Moral LG, De Montis A, El-Ahmed A, Maalouf F, Machlab H, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Tuberosa R (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Gen Res 4:79–85CrossRefGoogle Scholar
  39. Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedCrossRefGoogle Scholar
  40. Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer J, Czembor J, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228CrossRefGoogle Scholar
  41. Maccaferri M, Sanguineti MC, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2011a) Association mapping in durum wheat grown across a broad range of water regimes and yield potential. J Exp Bot 62:409–438PubMedCrossRefGoogle Scholar
  42. Maccaferri M, Ratti C, Rubies-Autonell C, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti MC (2011b) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123:527–544PubMedCrossRefGoogle Scholar
  43. Mago R, Lawrence GJ, Ellis JG (2011a) The application of DNA marker and doubled-haploid technology for stacking multiple stem rust resistance genes in wheat. Mol Breed 27:329–335CrossRefGoogle Scholar
  44. Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG, Spielmeyer W (2011b) A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet 123:615–623PubMedCrossRefGoogle Scholar
  45. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Eric H, De-Ambrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648CrossRefGoogle Scholar
  46. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome wide association mapping of fusarium head blight resistance in contempary barely breeding germplasm. Mol Breed 27:439–454CrossRefGoogle Scholar
  47. McIntosh RA (1980) Chromosome location and linkage studies involving the wheat stem rust resistance gene Sr14. Cereal Res Comm 8:315–320Google Scholar
  48. McIntosh RA, Brown GN (1997) Anticipatory breeding for resistance to rust diseases in wheat. Annu Rev Phytol 35:311–326CrossRefGoogle Scholar
  49. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, CanberraCrossRefGoogle Scholar
  50. Miedaner T, Wurschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655CrossRefGoogle Scholar
  51. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedCrossRefGoogle Scholar
  52. Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317CrossRefGoogle Scholar
  53. Njau PN, Jin Y, Huerta-Espino J, Keller B, Singh RP (2010) Identification and evaluation of sources of resistance to stem rust race Ug99 in wheat. Plant Dis 94:413–419CrossRefGoogle Scholar
  54. Olivera PD, Jin Y, Badebo A, Singh D (2010) Races of Puccinia graminis f.sp. tritici with virulence on Sr13 and Sr9e in durum screening nursery in Ethiopia. In: McIntosh R, Pretorious Z (eds) Proceedings of BGRI 2010 technical workshop, St Petersburg, Russia, May 30–31, pp 7-8Google Scholar
  55. Olivera PD, Jin Y, Rouse M, Badebo A, Fetch T, Singh RP, Yahyaoui A (2012) Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis 96:623–628Google Scholar
  56. Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect C 26:496–500CrossRefGoogle Scholar
  57. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203CrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  59. Rafalski JA (2002) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333CrossRefGoogle Scholar
  60. Rafalski JA (2011) Genomic tools for the analysis of genetic diversity. Plant Genetic Resour Charact Util 9:159–162CrossRefGoogle Scholar
  61. Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, MexicoGoogle Scholar
  62. Rutkoski JE, Heffner EL, Sorrells ME (2010) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173CrossRefGoogle Scholar
  63. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  64. Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658PubMedCrossRefGoogle Scholar
  65. Singh RP, Bechere E, Abdalla O (1992) Genetic analysis of resistance to stem rust in 10 durum wheats. Phytopathology 82:919–922CrossRefGoogle Scholar
  66. Singh RP, Huerta-Espino J, Fuentes G, Duveiller E, Gilchrist L, Henry M, Nicol MJ (2005) Resistance to diseases. In: Royo C, Nachit MM, Di Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: current approaches and future strategies. Food Product Press, Binghamton, pp 291–315Google Scholar
  67. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources. 1, No. 054Google Scholar
  68. Singh D, Girma B, Njau P, Wanyera R, Badebo A, Bhavani S, Singh RP, Huerta-Espino J, Woldeab G, Ward R (2009) Screening for stem rust resistance in East Africa. In: Proceedings of the 2009 BGRI Technical Workshop, CIMMYT, Cd. Obregon, Sonora, Mexico, March 17–20, 2009, pp 33–38Google Scholar
  69. Singh RP, Hadson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481PubMedCrossRefGoogle Scholar
  70. Skovmand B, Wilcoxson RD, Shearer BL, Stucker RE (1978) Inheritance of slow rusting to stem rust in wheat. Euphytica 27:95–107CrossRefGoogle Scholar
  71. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730PubMedCrossRefGoogle Scholar
  72. Storey JD, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCrossRefGoogle Scholar
  73. Stubbs RW, Prescott JM, Saari EE, Dubin HJ (1986) Cereal disease methodology manual. CIMMYT, Mexico, pp 45–46Google Scholar
  74. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES IV (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  75. Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708PubMedCrossRefGoogle Scholar
  76. Trebbi D, Maccaferri M, de Heer P, Sorensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569PubMedCrossRefGoogle Scholar
  77. van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EAG (2012) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J (accepted)Google Scholar
  78. Vavilov NI (1929) Wheat of Ethiopia. Bull Appl Bot Genetics Plant Breed 20:224–356Google Scholar
  79. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–36Google Scholar
  80. Wang M, Jiang N, Jia T, Leach L, Cockram J, Comadran J, Shaw P, Waugh R, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246PubMedCrossRefGoogle Scholar
  81. Wanyera R, Kinyua MG, Jin Y, Singh R (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Dis 90:113CrossRefGoogle Scholar
  82. You FM, Huo NX, Deal KR, Gu YQ, Luo MC, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics. doi: 10.1186/1471-2164-12-59 Google Scholar
  83. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  84. Yu L-X, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680CrossRefGoogle Scholar
  85. Yu L-X, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring whear germplasm. Theor Appl Genet 123:1257–1268PubMedCrossRefGoogle Scholar
  86. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  87. Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4 Int Wheat Genetics Symposium. Columbia, Missouri, pp 209–221Google Scholar
  88. Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377PubMedCrossRefGoogle Scholar
  89. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  90. Zwer PK, Park RF, McIntosh RA (1992) Wheat-Stem rust in Australia-1969-1985. Aust J Agric Res 43:399–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tesfaye Letta
    • 1
    • 4
  • Marco Maccaferri
    • 1
  • Ayele Badebo
    • 2
  • Karim Ammar
    • 3
  • Andrea Ricci
    • 1
  • Jose Crossa
    • 3
  • Roberto Tuberosa
    • 1
  1. 1.Department of Agricultural SciencesUniversity of BolognaBolognaItaly
  2. 2.Debre Zeit Agricultural Research CenterDebre ZeitEthiopia
  3. 3.CIMMYTMexicoMexico
  4. 4.Sinana Agricultural Research CenterBale-RobeEthiopia

Personalised recommendations