Theoretical and Applied Genetics

, Volume 126, Issue 5, pp 1189–1200 | Cite as

A non-additive interaction in a single locus causes a very short root phenotype in wheat

  • Wanlong Li
  • Huilan Zhu
  • Ghana S. Challa
  • Zhengzhi Zhang
Original Paper

Abstract

Non-additive allelic interactions underlie over dominant and under dominant inheritance, which explain positive and negative heterosis. These heteroses are often observed in the aboveground traits, but rarely reported in root. We identified a very short root (VSR) phenotype in the F1 hybrid between the common wheat (Triticum aestivum L.) landrace Chinese Spring and synthetic wheat accession TA4152-71. When germinated in tap water, primary roots of the parental lines reached ~15 cm 10 days after germination, but those of the F1 hybrid were ~3 cm long. Selfing populations segregated at a 1 (long-root) to 1 (short-root) ratio, indicating that VSR is controlled by a non-additive interaction between two alleles in a single gene locus, designated as Vsr1. Genome mapping localized the Vsr1 locus in a 3.8-cM interval delimited by markers XWL954 and XWL2506 on chromosome arm 5DL. When planted in vermiculite with supplemental fertilizer, the F1 hybrid had normal root growth, virtually identical to the parental lines, but the advanced backcrossing populations segregated for VSR, indicating that the F1 VSR expression was suppressed by interactions between other genes in the parental background and the vermiculite conditions. Preliminary physiological analyses showed that the VSR suppression is independent of light status but related to potassium homeostasis. Phenotyping additional hybrids between common wheat and synthetics revealed a high VSR frequency and their segregation data suggested more Vsr loci involved. Because the VSR plants can be regularly maintained and readily phenotyped at the early developmental stage, it provides a model for studies of non-additive interactions in wheat.

Supplementary material

122_2013_2046_MOESM1_ESM.pptx (64 kb)
Supplementary material 1 (PPTX 63 kb)
122_2013_2046_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)
122_2013_2046_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)
122_2013_2046_MOESM4_ESM.docx (11 kb)
Supplementary material 4 (DOCX 11 kb)

References

  1. Alemán F, Nieves-Cordones M, Martίnez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana Model. Plant Cell Physiol 52(9):1603–1612PubMedCrossRefGoogle Scholar
  2. Bateson W (1909) Heredity and variation in modern lights. In: Seward AC (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 85–101Google Scholar
  3. Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8(5):382–393PubMedCrossRefGoogle Scholar
  4. Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol 5(9):e236PubMedCrossRefGoogle Scholar
  5. Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2011) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol 154(3):1158–1171CrossRefGoogle Scholar
  6. Brieger F (1929) Vererbung bei Artbastarden unter besonderer berücksichtigung der Gattung Nicotiana. Der Züchter 1:140–152Google Scholar
  7. Canvin DT, McVetty PBE (1976) Hybrid grass-clump dwarfness in wheat: physiology and genetics. Euphytica 25:471–483CrossRefGoogle Scholar
  8. Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA 105:11436–11441PubMedCrossRefGoogle Scholar
  9. Chin K, Moeder W, Yoshioka K (2009) Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Botany 87:668–677CrossRefGoogle Scholar
  10. Christian M, Steffens B, Schenck D, Burmester S, Böttger M, Lüthen H (2006) How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol (Stuttg) 8(3):346–352CrossRefGoogle Scholar
  11. Chu YE, Oka H (1972) The distribution and effects of genes causing F1weakness in Oryza breviligulata and O. glaberrima. Genetics 70(1):163–173PubMedGoogle Scholar
  12. Chu CG, Faris JD, Friesen TL, Xu SS (2006) Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor Appl Genet 112(7):1374–1381PubMedCrossRefGoogle Scholar
  13. Dilkes BP, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott RJ, Comai L (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6(12):e308CrossRefGoogle Scholar
  14. Dvorak J, Luo M, Deal KR, McGuire P, You F, Gu YQ, Anderson O, Li W, Sehgal SS, Gill BS, Stein J, Pasternak S, Ware D, McCombie WR, Martis MM, Mayer K, Dolezel J (2012) Physical map and shotgun sequence of the Aegilops tauschii genome. Plant and Animal Genome Conference XX (https://pag.confex.com/pag/xx/webprogram/Paper2057.html)
  15. Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327PubMedGoogle Scholar
  16. Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA 108:2617–2622PubMedCrossRefGoogle Scholar
  17. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840PubMedCrossRefGoogle Scholar
  18. Hermsen JGT (1963) The genetic basis of hybrid necrosis in wheat. Genetica 33:245–287CrossRefGoogle Scholar
  19. Heyne EG, Wiebe GA, Painter RH (1943) Complementary genes in wheat causing death of F1 plants. J Hered 34:243–245Google Scholar
  20. Jeuken MJ, Zhang NW, McHale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, Visser RG, Niks RE (2009) Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21(10):3368–3378PubMedCrossRefGoogle Scholar
  21. Kihara H (1944) Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agric Hort (Tokyo) 19:13–14Google Scholar
  22. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12(3):172–175Google Scholar
  23. Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463Google Scholar
  24. Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296(5568):744–747PubMedCrossRefGoogle Scholar
  25. Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278:187–196PubMedCrossRefGoogle Scholar
  26. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181PubMedCrossRefGoogle Scholar
  27. Li W, Huang L, Gill BS (2008) Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat. Plant Physiol 146(1):200–212PubMedCrossRefGoogle Scholar
  28. Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Wu H, Liu YG (2008) Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci U S A. 105(48):18871–18876PubMedCrossRefGoogle Scholar
  29. Maan SS, Carlson KM, Williams ND, Yang T (1987) Chromosomal arm location and gene-centromere distance of a dominant gene for male sterility in wheat. Crop Sci 27:494–500CrossRefGoogle Scholar
  30. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89PubMedGoogle Scholar
  31. McIntosh RA, Yamazaki Y, DubcovskY J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: Proceedings of the 11th international wheat genetics symposium, 24–29 August 2008, Brisbane Qld Australia. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/Catalogue2008.pdf
  32. Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8(11):1113–1130PubMedGoogle Scholar
  33. Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 13(8):1497–1504CrossRefGoogle Scholar
  34. Mizuno N, Hosogi N, Park P, Takumi S (2010) Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii coss. PLoS ONE 5(6):e11326PubMedCrossRefGoogle Scholar
  35. Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S (2011) Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. Plant J 68(1):114–128PubMedCrossRefGoogle Scholar
  36. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–15031PubMedCrossRefGoogle Scholar
  37. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590PubMedCrossRefGoogle Scholar
  38. Pukhalskiy VA, Martynov SP, Dobrotvorskaya TV (2000) Analysis of geographical and breeding-related distribution of hybrid necrosis genes in bread wheat (Triticum aestivum L.). Euphytica 114:233–240CrossRefGoogle Scholar
  39. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin, Gustafson JP, Wennerlind EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi D-W, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 10,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712PubMedCrossRefGoogle Scholar
  40. Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139(18):3402–3412PubMedCrossRefGoogle Scholar
  41. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45Google Scholar
  42. Shivaprasad PV, Dunn RM, Santos BACM, Bassett A, Baulcombe DC (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266CrossRefGoogle Scholar
  43. Smith LM, Bomblies K, Weigel D (2011) Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genet 7:e1002164PubMedCrossRefGoogle Scholar
  44. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114PubMedCrossRefGoogle Scholar
  45. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110(3):550–560PubMedCrossRefGoogle Scholar
  46. Sugie A, Murai K, Takumi S (2007) Alteration of respiration capacity and transcript accumulation level of alternative oxidase genes in necrosis lines of common wheat. Genes Genet Syst 82(3):231–239PubMedCrossRefGoogle Scholar
  47. Tsunewaki K (1970) Necrosis and chlorosis genes in common wheat and its ancestral species. Seiken Ziho 22:67–75Google Scholar
  48. Wang Y, Wu WH (2010) Plant sensing and signaling in response to K+-deficiency. Mol Plant 3:280–287PubMedCrossRefGoogle Scholar
  49. Yang YF, Furuta Y, Nagata S, Watanabe N (1999) Tetra Chinese Spring with AABB genomes extracted from the hexaploid common wheat (Triticum aestivum), Chinese spring. Genes Genet Syst 74:67–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wanlong Li
    • 1
    • 2
  • Huilan Zhu
    • 1
  • Ghana S. Challa
    • 1
  • Zhengzhi Zhang
    • 1
  1. 1.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA
  2. 2.Department of Plant ScienceSouth Dakota State UniversityBrookingsUSA

Personalised recommendations