Skip to main content
Log in

Genomewide markers as cofactors for precision mapping of quantitative trait loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In composite interval mapping of quantitative trait loci (QTL), subsets of background markers are used to account for the effects of QTL outside the marker interval being tested. Here, I propose a QTL mapping approach (called G model) that utilizes genomewide markers as cofactors. The G model involves backward elimination on a given chromosome after correcting for genomewide marker effects, calculated under a random effects model, at all the other chromosomes. I simulated a trait controlled by 15 or 30 QTL, mapping populations of N = 96, 192, and 384 recombinant inbreds, and N M = 192 and 384 evenly spaced markers. In the C model, which utilized subsets of background markers, the number of QTL detected and the number of false positives depended on the number of cofactors used, with five cofactors being too few with N = 384 and 20–40 cofactors being too many with N = 96. A window size of 0 cM for excluding cofactors maintained the number of true QTL detected while decreasing the number of false positives. The number of true QTL detected was generally higher with the G model than with the C model, and the G model led to good control of the type I error rate in simulations where the null hypothesis of no marker–QTL linkage was true. Overall, the results indicated that the G model is useful in QTL mapping because it is less subjective and has equal, if not better, performance when compared with the traditional approach of using subsets of markers to account for background QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144

    Article  Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bhattramakki D, Rafalski A (2002) Discovery and application of single nucleotide polymorphism markers in plants. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CABI Publishing, Oxford, pp 179–191

    Google Scholar 

  • Bjørnstad Å, Grønnerød S, Mac Key J, Tekauz A, Crossa J, Martens H (2004) Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines ‘Steudelli’ and ‘Jet’, analyzed by partial least squares regression and interval mapping. Hereditas 141:166–179

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Cornforth TW, Long AD (2003) Inferences regarding the numbers and locations of QTLs under multiple-QTL models using interval mapping and composite interval mapping. Genet Res 82:139–149

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Zeng ZB, Weir BS (1994) Statistical issues in the search for genes affecting quantitative traits in populations. In: Analysis of molecular marker data (supplement). Joint Plant Breed Symp Ser, Am Soc Hort Sci, Crop Sci Soc Am, Madison, p 15–26

  • Guo Z, Tucker D, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    Article  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Jannink J, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Hyten DL, Song Q, Choi I-Y, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1992) A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet 85:252–260

    Article  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Kao C-H, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Liu B-H (1998) Computational tools for study of complex traits. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 43–79

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 113:77–123

    Article  Google Scholar 

  • Lorenzana R, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinnauer Associates Inc., Sunderland

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Murdock D, Tsai Y, Adcock J (2008) P-values are random variables. Am Stat 62:242–245

    Article  Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence repeat markers developed from maize sequences found in the GENBANK database: map construction. Crop Sci 36:1676–1683

    Article  CAS  Google Scholar 

  • Smith JSC, Hussain T, Jones ES, Graham G, Podlich D, Wall S, Williams M (2008) Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed 22:51–59

    Article  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–5

    Google Scholar 

  • van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2000) Variants of factorial regression for analysing QTL by environment interaction. In: Gallais A, Dillmann C, Goldringer I (eds) Quantitative genetics and breeding methods: the way ahead, vol 96. INRA editions, Versailles, Les colloques, p 107–116

  • van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2002) Analysing QTL by environment interaction by factorial regression, with an application to the CIMMYT drought and low nitrogen stress programme in maize. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, Wallingford, pp 245–256

    Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten C, Zeng Z-B (2006) Windows QTL Cartographer. North Carolina State University, Raleigh

    Google Scholar 

  • Whittaker JC, Thompson R, Visscher PM (1996) On the mapping of QTL by regression of phenotypes on marker-type. Heredity 77:23–32

    Article  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Nat Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernardo.

Additional information

Communicated by F. van Eeuwijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo, R. Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor Appl Genet 126, 999–1009 (2013). https://doi.org/10.1007/s00122-012-2032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2032-2

Keywords

Navigation