Skip to main content
Log in

Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Non-denaturing FISH (ND-FISH) was used to compare the distribution of four simple sequence repeats (SSRs)—(AG) n , (AAG) n , (ACT) n and (ATC) n —in somatic root tip metaphase spreads of 12 barley (H. vulgare ssp. vulgare) cultivars, seven lines of their wild progenitor H. vulgare ssp. spontaneum, and four lines of their close relative H. bulbosum, to determine whether the range of molecular diversity shown by these highly polymorphic sequences is reflected at the chromosome level. In both, the cultivated and wild barleys, clusters of AG and ATC repeats were invariant. In contrast, clusters of AAG and ACT showed polymorphism. Karyotypes were prepared after the identification of their seven pairs of homologous chromosomes. Variation between these homologues was only observed in one wild accession that showed the segregation of a reciprocal translocation involving chromosomes 5H and 7H. The two subspecies of H. vulgare analysed were no different in terms of their SSRs. Only AAG repeats were found clustered strongly on the chromosomes of all lines of H. bulbosum examined. Wide variation was seen between homologous chromosomes within and across these lines. These results are the first to provide insight into the cytogenetic diversity of SSRs in barley and its closest relatives. Differences in the abundance and distribution of each SSR analysed, between H. vulgare and H. bulbosum, suggest that these species do not share the same H genome, and support the idea that these species are not very closely related. Southern blotting experiments revealed the complex organization of these SSRs, supporting the findings made with ND-FISH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert PS, Gao Z, Danilova TV, Birchler JA (2010) Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res 129:6–16

    Article  PubMed  CAS  Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17(4):499–510

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR (2009) Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breed Sci 59:471–480

    Article  CAS  Google Scholar 

  • Casas AM, Igartua E, Valles MP, Molina-Cano JL (1998) Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant Breed 117:425–429

    Article  Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in genus Secale. J Hered 93:339–345

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Jouve N (2007a) Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cytogenet Genome Res 119:91–9917

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Jouve N (2007b) The non-random distribution of long clusters of all possible classes of tri-nucleotide repeats in barley chromosomes. Chromosom Res 15:711–720

    Article  CAS  Google Scholar 

  • Cuadrado N, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 19:495–503

    Article  Google Scholar 

  • Cuadrado A, Jouve N (2011) Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. BMC Genomics 12:205

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219

    Article  PubMed  CAS  Google Scholar 

  • de Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive DNA sequences and 5S and 18S–26S rDNA in five wild species of the genus Hordeum. Chromosom Res 4:491–499

    Article  Google Scholar 

  • Friebe B, Gill B (1994) C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78:1–5

    Google Scholar 

  • Houben A, Pickering R (2009) Applying cytogenetics and genomics to wide hybridisations in the genus Hordeum. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models, vol 7(5). Springer Science, New York, p 137

  • Kato A (2011) High-density fluorescence in situ hybridization signal detection on barley (Hordeum vulgare L.) chromosomes with improved probe screening and reprobing procedures. Genome 54(2):151–159

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen I, von Botmer R, Jacobsen N (1992) Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas 116:111–116

    Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with and internationally agreed recommendation for barley chromosome nomenclature. Hereditas 123:1–16

    Google Scholar 

  • Morgante M, Oliveri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3(1):175–182

    Google Scholar 

  • Nanda I, Zischler H, Epplen C, Guttenbach M, Schmid M (1991) Chromosomal organization of simple repeated DNA sequences used for DNA fingerprinting. Electrophoresis 12:193–203

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39:93–104

    Article  PubMed  CAS  Google Scholar 

  • Pickering R, Klatte S, Butler RC (2006) Identification of all chromosome arms and their involvement in meiotic homoeologous associations at metaphase I in 2 Hordeum vulgare L. × Hordeum bulbosum L. hybrids. Genome 49:73–78

    Article  PubMed  CAS  Google Scholar 

  • Plohl M, Luchetti A, Mestrovic N, Mantovani B (2002) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    Article  Google Scholar 

  • Ramsay L, Macaulay M, Cardle L, Morgante M, Ivanissewith S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–525

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzum V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023

    PubMed  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5547

    Article  PubMed  CAS  Google Scholar 

  • Sanel M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108(33):498–505

    Article  Google Scholar 

  • Schneider A, Linc G, Molnár-Láng M, Graner A (2003) Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed 122:396–400

    Article  CAS  Google Scholar 

  • Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, deJong P, Wu CC, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247

    Article  PubMed  CAS  Google Scholar 

  • Shcherban AB, Vershinin AV (1992) The stretched BamHI-fragment of barley genome containing richly repetitive DNA sequences. Genetika 28:15–21

    CAS  Google Scholar 

  • Svitashev Bryngelsson T, Vershinin A, Pederse C, Sáll T, von Bothmer R (1994) Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theor Appl Genet 89:801–810

    Article  CAS  Google Scholar 

  • Taketa S, Linde-Laursen I, Künzel G (2009) Cytogenetic diversity. In: von Bothmer R, Van Hintum Th, Knüpffer H, Sato D (eds) Diversity in Barley (Hordeum vulgare), pp 97–119. Elsevier Science, Amsterdam

    Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  PubMed  CAS  Google Scholar 

  • Terasawa Y, Rahman SM, Takata K, Ikeda TM (2012) Distribution of Hordoindoline genes in the genus Hordeum. Theor Apple Genet. doi:10.1007/s00122-011-1693-6

    Google Scholar 

  • von Bothmer R, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusso D (ed) Barley. Agronomy Monographs 26. American Society of Agronomy, Madison, pp 19–56

    Google Scholar 

  • Xu J, Procunier D, Kasha KJ (1999) Species-specific in situ hybridization of Hordeum bulbosum chromosomes. Genome 33:628–634

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Spanish Ministry of Education and Science (AGL2006-09018-C02). The authors thank Adrian Burton for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Cuadrado.

Additional information

Communicated by B. Friebe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2012_2028_MOESM1_ESM.jpg

Fig. S1 Photomicrographs showing the chromosomal distribution of (AG)10 by ND-FISH in metaphases of the indicated cultivars of H. vulgare ssp. vulgare (ai) and lines of H. vulgare ssp. spontaneum (ms). Scale bar = 10 µm (JPEG 3354 kb)

122_2012_2028_MOESM2_ESM.jpg

Fig. S2 Photomicrographs showing the chromosomal distribution of (AAG)5 by ND-FISH in metaphases of the indicated cultivars of H. vulgare ssp. vulgare (ai) and lines of H. vulgare ssp. spontaneum (ms). Scale bar = 10 µm (JPEG 3797 kb)

122_2012_2028_MOESM3_ESM.jpg

Fig. S3 Photomicrographs showing the chromosomal distribution of (ACT)5 by ND-FISH in metaphases of the indicated cultivars of H. vulgare ssp. vulgare (ai) and lines of H. vulgare ssp. spontaneum (ms). Scale bar = 10 µm (JPEG 4499 kb)

122_2012_2028_MOESM4_ESM.jpg

Fig. S4 Photomicrographs showing the chromosomal distribution of (ATC)5 by ND-FISH in metaphases of the indicated cultivars of H. vulgare ssp. vulgare (ai) and lines of H. vulgare ssp. spontaneum (ms). Scale bar = 10 µm (JPEG 4021 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, A., Friero, E., de Bustos, A. et al. Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L.. Theor Appl Genet 126, 949–961 (2013). https://doi.org/10.1007/s00122-012-2028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2028-y

Keywords

Navigation