Theoretical and Applied Genetics

, Volume 126, Issue 1, pp 143–158 | Cite as

Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant

  • A. Lebeau
  • M. Gouy
  • M. C. Daunay
  • E. WickerEmail author
  • F. Chiroleu
  • P. Prior
  • A. Frary
  • J. DintingerEmail author
Original Paper


Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F6 population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.


Quantitative Trait Locus Amplify Fragment Length Polymorphism Amplify Fragment Length Polymorphism Marker Bacterial Wilt Sequence Characterize Amplify Region Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to A. Palloix, M. Pitrat, M. Causse, and V. Lefebvre (Institut National de la Recherche Agronomique (INRA), UR 1052) for their help in analysing the segregation results as well as for early review of this paper. We also thank E. Chapier-Fontaine, J. J. Chéron, J. M. Baptiste and S. Lebon (Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Réunion) for providing technical assistance. This work was funded by De Ruiter Seeds, Enza Zaden, Gautier Semences, Nunhems, Rijk Zwaan, and Vilmorin & Cie; the European Regional Development Funds (FEDER) of the European Union, Conseil Régional de la Réunion also provided financial support as part of the programme “Lutte génétique contre les maladies émergentes chez les solanées maraîchères”(GENETOM).

Supplementary material

122_2012_1969_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 75 kb)
122_2012_1969_MOESM2_ESM.doc (48 kb)
Supplementary material 2 (DOC 48 kb)


  1. Ano G, Prior P, Manyri J, Vincent C (1990) Stratégies d’amélioration de l’aubergine (Solanum melongena L.) pour la résistance au flétrissement bactérien causé par Pseudomonas solanacearum E.F.S. Journées maraîchères CIRAD-ORSTOM-INRA 570–579Google Scholar
  2. Ano G, Hébert Y, Prior P, Messiaen CM (1991) A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L. × Solanum melongena L. Agronomie 11:555–560CrossRefGoogle Scholar
  3. Broman K, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890PubMedCrossRefGoogle Scholar
  4. Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riosdan TP, Dweikat I (2004) Molecular characterization of buffalograss using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328–334PubMedCrossRefGoogle Scholar
  5. Buddenhagen I, Sequeira L, Kelman A (1962) Designation of races in Pseudomonas solanacearum. Phytopathology 52:726Google Scholar
  6. Cao BH, Lei JJ, Wang Y, Chen GJ (2009) Inheritance and identification of SCAR linked to bacterial wilt-resistance in eggplant. Afr J Biotechnol 8:5201–5207Google Scholar
  7. Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121PubMedCrossRefGoogle Scholar
  8. Chen NC, Li HM, Wang JF (1997) Bacterial wilt resistance sources in eggplant, Solanum melongena. Capsicum Eggplant Newsl 14:4–5Google Scholar
  9. Cook D, Sequeira L (1994) Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 77–93Google Scholar
  10. Cook D, Barlow E, Sequeira L (1989) Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and hypersensitive response. Mol Plant Microbe Interact 2:113–121CrossRefGoogle Scholar
  11. Daly P (1973) Obtention d’une nouvelle variété d’aubergine au Pseudomonas solanacearum. Agronomie Tropicale Série 1 : Riz et Riziculture et Cultures Vivrières Tropicales 28:28–33Google Scholar
  12. Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644Google Scholar
  13. Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F, Courtois B, Reynaud B, Hamon P (2005) Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet 111:347–359PubMedCrossRefGoogle Scholar
  14. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedGoogle Scholar
  15. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley S (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedGoogle Scholar
  16. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  17. Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, USA, pp 9–28Google Scholar
  18. Fegan M, Prior P (2005) How complex is the “Ralstonia solanacearum species complex”. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Madison, pp 449–462Google Scholar
  19. Fukuoka H, Miyatake K, Nunome T, Negoro S, Yamaguchi H, Ohyama A (2010) Development of an integrated linkage map using genomic SSR and gene based SNPs markers in eggplant. In: Prohens J, Rodríguez A (eds) Advances in genetics and breeding of capsicum and eggplant. Editoríal de la universitat Politèchnica de Valèncía, Valencía, pp 359–375Google Scholar
  20. Gonzalez WG, Summers WL (1995) A comparison of Pseudomonas solanacearum- resistant tomato cultivars as hybrid parents. J Am Soc Hortic Sci 120:891–895Google Scholar
  21. Granada G, Sequeira L (1983) A new selective medium for Pseudomonas solanacearum. Plant Dis 67:1084–1088CrossRefGoogle Scholar
  22. Grimault V, Prior P (1994) Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper: a comparative study. Eur J Plant Pathol 100:259–267CrossRefGoogle Scholar
  23. Grimault V, Anais G, Prior P (1994) Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathol 43:663–668CrossRefGoogle Scholar
  24. Grimault V, Prior P, Anais G (1995) A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. J Phytopathol 143:349–352CrossRefGoogle Scholar
  25. Haldane JBS (1919) The combination of linkage values, and the calculation of distance between distance loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  26. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedCrossRefGoogle Scholar
  27. Hallauer AR, Miranda GV (1981) Quantitative genetics in maize breeding. Iowa State University Press, AmesGoogle Scholar
  28. Hanson PM, Wang JF, Licardo O, Hanudin SY, Mah SY, Hartman GL, Lin YC, Chen JT (1996) Variable reactions of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143–146Google Scholar
  29. Hanudin, Hanafiah Gaos MA (1993) Screening of eggplant accessions for resistance to bacterial wilt. In: Hartman GL, Hayward AC (eds) Bacterial wilt ACIAR proceedings No 45. ACIAR, Canberra, pp 191–192Google Scholar
  30. Hayward AC (1964) Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 27:265–277CrossRefGoogle Scholar
  31. Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87PubMedCrossRefGoogle Scholar
  32. Hayward AC (1994) The hosts of Pseudomonas solanacearum. In: Hayward ACH, Hartman GL (ed) Bacterial wilt—the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 9–24Google Scholar
  33. He LY, Sequeira L, Kelman A (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis 67:1357–1361CrossRefGoogle Scholar
  34. Henderson C (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447PubMedCrossRefGoogle Scholar
  35. Horita M, Tsuchiya K (2001) Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology 91:399–407PubMedCrossRefGoogle Scholar
  36. Ivey MLL, McSpadden Gardener BB, Opina N, Miller SA (2007) Diversity of Ralstonia solanacearum infecting eggplant in the Philippines. Phytopathology 97:1467–1475PubMedCrossRefGoogle Scholar
  37. Jaunet TX, Wang JF (1999) Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327PubMedCrossRefGoogle Scholar
  38. Jeger MJ, Viljanen-Robinson S (2001) The use of area under the disease progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40CrossRefGoogle Scholar
  39. Ji P, Allen C, Sanchez-Perez A, Yao J, Elphinstone JG, Jones JB, Momol MT (2007) New diversity of Ralstonia solanacearum strains associated with vegetable and ornamental crops in Florida. Plant Dis 91:195–203CrossRefGoogle Scholar
  40. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127PubMedGoogle Scholar
  41. Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695Google Scholar
  42. Kelman A (1998) One hundred and one years of research on bacterial wilt. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspects. Springer, Berlin, pp 1–5Google Scholar
  43. Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 9:257–262Google Scholar
  44. Lafortune D, Béramis M, Daubèze A-M, Boissot N, Palloix A (2005) Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions. Plant Dis 89:501–506CrossRefGoogle Scholar
  45. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  46. Lander ES, Green P, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  47. Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165PubMedCrossRefGoogle Scholar
  48. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  49. Li HP, Goth RW, Barksdale TH (1988) Evaluation of resistance to bacterial wilt in eggplant. Plant Dis 72:437–439CrossRefGoogle Scholar
  50. Li M, Wang Y, Tian S, Luo Z, Wang X (2006) Genetic analysis of resistance to bacterial wilt and identification of an associated AFLP marker in eggplant (Solanum melongena). Acta Horticulturae Sinica 33:869–872Google Scholar
  51. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557PubMedCrossRefGoogle Scholar
  52. Mahbou Somo Toukam G (2010) Diversité de Ralstonia solanacearum au Cameroun et bases génétiques de la résistance chez le piment (Capsicum annuum) et les solanacées. Thèse. Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech)Google Scholar
  53. Mahbou Somo Toukam G, Cellier G, Wicker E, Guilbaud C, Kahane R, Allen C, Prior P (2009) Broad diversity of Ralstonia solanacearum strains in Cameroon. Plant Dis 93:1123–1130CrossRefGoogle Scholar
  54. Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172PubMedGoogle Scholar
  55. Miao L, Shou S, Cai J, Jiang F, Zhu Z, Li H (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36:479–486PubMedCrossRefGoogle Scholar
  56. Mochizuki H, Yamakawa K (1979) Resistance of selected eggplant cultivars and related wild Solanum species to bacterial wilt (Pseudomonas solanacearum). Bull Vegetable Ornam Crops 6:1–10Google Scholar
  57. Mohamed M, Umaharan P, Phelps RH (1997) Genetic nature of bacterial wilt resistance in tomato (lycopersicon esculentum Mill.) accession La 1421. Euphytica 96:323–326CrossRefGoogle Scholar
  58. Norman DJ, Zapata M, Gabriel DW, Duan YP, Yuen JMF, Mangravita-Novo A, Donahoo RS (2009) Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathology 99:1070–1077PubMedCrossRefGoogle Scholar
  59. Nunome T, Yoshida T, Hirai M (1998) Genetic linkage map of eggplant (Solanum melongena). In: Palloix A, Daunay MC (eds) Xth EUCARPIA meeting on genetics and breeding on Capsicum & Eggplant. INRA Paris, Avignon, pp 239–242Google Scholar
  60. Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26CrossRefGoogle Scholar
  61. Nunome T, Suwabe K, Iketani H, Hirai M, Wricke G (2003a) Identification and characterization of microsatellites in eggplant. Plant Breed 122:256–262CrossRefGoogle Scholar
  62. Nunome T, Suwabe K, Ohyama A, Fukuoka H (2003b) Characterization of trinucleotide microsatellites in eggplant. Breed Sci 53:77–83CrossRefGoogle Scholar
  63. Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153PubMedCrossRefGoogle Scholar
  64. Pegg KG, Moffett M (1971) Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husbandry 11:696–698CrossRefGoogle Scholar
  65. Ponnuswami V, Chen NC, Shanmugasundaram S (1996) New sources of resistance to bacterial wilt in eggplant. TVIS Newsl 1:16Google Scholar
  66. Poussier S, Vandewalle P, Luisetti J (1999) Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region. Appl Environ Microbiol 65:2184–2194PubMedGoogle Scholar
  67. Prior P, Bart S, Leclercq S, Darrasse A, Anais G (1996) Resistance to bacterial wilt in tomato as discerned by spread of Pseudomonas (Burholderia) solanacearum in the stem tissues. Plant Pathol 45:720–726CrossRefGoogle Scholar
  68. Rao MVB, Sohi HS, Vijay OP (1976) Reaction of some varieties of brinjal (Solanum melongena L.) Pseudomonas solanacearum Sm. Vegetable Sci 3:61–64Google Scholar
  69. Sakata Y, Monma S, Narikawa T, Komochi S (1996) Evaluation of resistance to bacterial wilt and Verticillium wilt in eggplants (Solanum melongena L) collected in Malaysia. J Jpn Soc Hortic Sci 65:81–88CrossRefGoogle Scholar
  70. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. In: Computing RFfS (ed) Vienna, AustriaGoogle Scholar
  71. Sanchez Perez A, Mejia L, Fegan M, Allen C (2008) Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurrence of tomato fruit infection. Plant Pathol 57:320–331CrossRefGoogle Scholar
  72. Scott JW, Somodi GC, Jones JB (1988) Bacterial spot resistance is not associated with bacterial wilt resistance in tomato. Proc Florida State Hortic Soc 101:390–392Google Scholar
  73. Sitaramaiah K, Sinha SK, Vishwakarma SN (1985) Reaction of brinjal cultivars to bacterial wilt caused by Pseudomonas solanacearum. Indian J Mycol Plant Pathol 14:218–222Google Scholar
  74. Stagel A, Portis E, Toppino L, Rotino G, Lanteri S (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9:357PubMedCrossRefGoogle Scholar
  75. Sun B, Liao Y, Li Z, Li Z, Sun G (2008) AFLP markers linked to genes related to bacterial wilt resistance of eggplant. Mol Plant Breed 6:929–934Google Scholar
  76. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley N (1996) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol Plant Microbe Interact 9:826–836CrossRefGoogle Scholar
  77. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. JQTL 2Google Scholar
  78. Vasse J, Danoun S, Trigalet A (2005) Microscopic studies of root infection in resistant tomato cultivar Hawaii7996. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, pp 285–291Google Scholar
  79. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprint. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  80. Wang JF, Chen JT, Li HM (1998) Resistance sources to bacterial wilt in eggplant (Solanum melongena). In: Prior P, Allen C, Elphinstone JG (eds) Bacterial wilt disease—molecular and ecological aspects. Springer, Berlin, pp 284–289Google Scholar
  81. Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13PubMedCrossRefGoogle Scholar
  82. Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Prior P (2009) Epidemiological evidence for the emergence of a new pathogenic variant of Ralstonia solanacearum in Martinique (French West Indies). Plant Pathol 58:853–861CrossRefGoogle Scholar
  83. Wu FN, Eannetta NT, Xu YM, Tanksley SD (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935PubMedCrossRefGoogle Scholar
  84. Xu J, Pan Z, Prior P, Zhang Z, Zhang H, Zhang L, He L, Feng J (2009) Genetic diversity of Ralstonia solanacearum strains from China. Eur J Plant Pathol 125:641–653CrossRefGoogle Scholar
  85. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.CIRAD, UMR Peuplements végétaux et Bioagresseurs en Milieu Tropical (PVBMT)Saint PierreFrance
  2. 2.INRA/CIRAD, UMR PVBMTSaint-Pierre CedexFrance
  3. 3.Unité de Génétique et Amélioration des Fruits et LégumesInstitut National de la Recherche Agronomique (INRA), Centre d’Avignon, UR1052MontfavetFrance
  4. 4.Department of Molecular Biology and GeneticsIzmir Institute of TechnologyUrlaTurkey

Personalised recommendations