Skip to main content

Accessing complex crop genomes with next-generation sequencing

Abstract

Many important crop species have genomes originating from ancestral or recent polyploidisation events. Multiple homoeologous gene copies, chromosomal rearrangements and amplification of repetitive DNA within large and complex crop genomes can considerably complicate genome analysis and gene discovery by conventional, forward genetics approaches. On the other hand, ongoing technological advances in molecular genetics and genomics today offer unprecedented opportunities to analyse and access even more recalcitrant genomes. In this review, we describe next-generation sequencing and data analysis techniques that vastly improve our ability to dissect and mine genomes for causal genes underlying key traits and allelic variation of interest to breeders. We focus primarily on wheat and oilseed rape, two leading examples of major polyploid crop genomes whose size or complexity present different, significant challenges. In both cases, the latest DNA sequencing technologies, applied using quite different approaches, have enabled considerable progress towards unravelling the respective genomes. Our ability to discover the extent and distribution of genetic diversity in crop gene pools, and its relationship to yield and quality-related traits, is swiftly gathering momentum as DNA sequencing and the bioinformatic tools to deal with growing quantities of genomic data continue to develop. In the coming decade, genomic and transcriptomic sequencing, discovery and high-throughput screening of single nucleotide polymorphisms, presence–absence variations and other structural chromosomal variants in diverse germplasm collections will give detailed insight into the origins, domestication and available trait-relevant variation of polyploid crops, in the process facilitating novel approaches and possibilities for genomics-assisted breeding.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotech J (in press, 2012)

  • Associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu T et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    PubMed  Article  CAS  Google Scholar 

  • Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D, Jones JDG, Varshney RK (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    PubMed  Article  CAS  Google Scholar 

  • Bagnato A, Rosati A (2012) From the editors—animal selection: the genomics revolution. Anim Front 12:1–2

    Article  Google Scholar 

  • Bancroft I, Stokes DR, Morgan CL, Fraser FP, O’Neill C (2009) Prediction of heterosis and other traits by transcriptome analysis. Patent application number 20090300781

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    PubMed  Article  CAS  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    PubMed  Article  CAS  Google Scholar 

  • Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, Berlin, pp 95–102

  • Batley J, Edwards D (2009) Genome sequence data: management, storage, and visualization. Biotechniques 46:333–336

    PubMed  Article  CAS  Google Scholar 

  • Beckmann JS, Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35:111–124

    Article  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubalakova M, Simkova H, Batley J, Fleury D, Dolezel J, Edwards D (2011a) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotech J 9:768–775

    Article  CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubalakova M, Simkova H, Batley J, Dolezel J, Hernandez P, Edwards D (2011b) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet (in press)

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next generation sequencing applications for wheat crop improvement. Am J Bot (in press)

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Bundock PC, Casu RE, Henry RJ (2012) Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant Biotech J 10:657–667

    Article  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and aegilops). Plant Cell 17:1033–1045

    Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. Plos One 7

  • Chia J-M, Ware D (2011) Sequencing for the cream of the crop. Nat Biotech 29:138–139

    Article  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper R, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson E, Hayes P (2011) Construction and application for QTL analysis of a restriction site

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    PubMed  Article  CAS  Google Scholar 

  • Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009a) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucl Acids Res 37:D951–D953

    PubMed  Article  CAS  Google Scholar 

  • Duran C, Appleby N, Vardy M, Imelfort M, Edwards D, Batley J (2009b) Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotech J 7:326–333

    Article  CAS  Google Scholar 

  • Duran C, Appleby N, Edwards D, Batley J (2009c) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27

    Article  CAS  Google Scholar 

  • Duran C, Eales D, Marshall D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Appleby N, Batley J, Basford K, Edwards D (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023

    PubMed  Article  CAS  Google Scholar 

  • Eckardt NA (2001) A sense of self: the role of DNA sequence elimination in allopolyploidization. Plant Cell 13:1699–1704

    PubMed  CAS  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotech J 7:1–8

    Article  Google Scholar 

  • Edwards D, Wilcox S, Barrero RA, Fleury D, Cavanagh CR, Forrest KL, Hayden MJ, Moolhuijzen P, Keeble-Gagnère G, Bellgard MI, Lorenc MT, Shang CA, Baumann U, Taylor JM, Morell MK, Langridge P, Appels R, Fitzgerald A (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotech J 10:703–708

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    PubMed  Article  CAS  Google Scholar 

  • Flavell RB, Rimpau J, Smith DB (1977) Repeated sequence DNA relationships in four cereal genomes. Chromosoma 63:205–222

    Article  CAS  Google Scholar 

  • Fleury D, Luo M-C, Dvorak J, Ramsay L, Gill BS, Anderson OD, You FM, Shoaei Z, Deal KR, Langridge P (2010) Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. Bmc Genomics 11

  • Fu Y, Springer NM, Gerhardt DJ, Ying K, Yeh CT, Wu W, Swanson-Wagner R, D’Ascenzo M, Millard T, Freeberg L, Aoyama N, Kitzman J, Burgess D, Richmond T, Albert TJ, Barbazuk WB, Jeddeloh JA, Schnable PS (2010) Repeat subtraction-mediated sequence capture from a complex genome. Plant J 62:898–909

    PubMed  Article  CAS  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    PubMed  Article  CAS  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    PubMed  Article  CAS  Google Scholar 

  • Gholami M, Bekele WA, Schondelmaier J, Snowdon RJ (2012) A tailed PCR procedure for cost-effective, two-order multiplex sequencing of candidate genes in polyploid plants. Plant Biotech J 10:635–645

    Article  CAS  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096

    Google Scholar 

  • Gore MQ, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JL, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    PubMed  Article  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    PubMed  Article  CAS  Google Scholar 

  • Hayward A, Dalton-Morgan J, Mason A, Zander M, Edwards D, Batley J (2012a) SNP discovery and applications in Brassica napus. J Plant Biotech 39:49–61

    Article  Google Scholar 

  • Hayward A, McLanders J, Campbell E, Edwards D, Batley J (2012b) Genomic advances will herald new insights into the Brassica:Leptosphaeria maculans pathosystem. Plant Biol 14:1–10

    PubMed  Article  CAS  Google Scholar 

  • Hayward A, Vighnesh G, Delay C, Samian MR, Manoli S, Stiller J, McKenzie M, Edwards D, Batley J (2012c) Second-generation sequencing for gene discovery in the Brassicaceae. Plant Biotech J 10:750–759

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, Mayer KFX (2012) Next generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    PubMed  Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    PubMed  Article  CAS  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    PubMed  Article  CAS  Google Scholar 

  • Imelfort M, Batley J, Grimmond S, Edwards D (2009a) Genome sequencing approaches and successes. In: Somers D, Langridge P, Gustafson J (eds) Plant genomics. Humana Press, New Jersey, pp 345–358

    Chapter  Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009b) Discovering genetic polymorphisms in next generation sequencing data. Plant Biotech J 7(4):312–317

    Article  CAS  Google Scholar 

  • Iñiguez Luy FL, Federico ML (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, Dordrecht, pp 291–322

    Chapter  Google Scholar 

  • International Brachypodium Initiative (2010) The genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    PubMed  Article  CAS  Google Scholar 

  • Kubalakova M, Lysak MA, Vrana J, Simkova H, Cihalikova J, Dolezel J (2000) Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS. Cytometry 41:102–108

    PubMed  Article  CAS  Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    PubMed  Article  Google Scholar 

  • Kubalakova M, Valarik M, Bartos J, Vrana J, Cihalikova J, Molnar-Lang M, Dolezel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905

    PubMed  Article  CAS  Google Scholar 

  • Laat AMMD, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Article  Google Scholar 

  • Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D (2011) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:1–7

    Google Scholar 

  • Lai K, Duran C, Berkman PJ, Lorenc MT, Stiller J, Manoli S, Hayden MJ, Forrest KL, Fleury D, Baumann U, Zander M, Mason AS, Batley J, Edwards D (2012a) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotech J 10:743–749

    Article  CAS  Google Scholar 

  • Lai K, Lorenc MT, Edwards D (2012b) Genomic databases for crop improvement. Agronomy 2:62–73

    Article  Google Scholar 

  • Lee JH, Arumuganathan K (1999) Metaphase chromosome accumulation and flow karyotypes in rice (Oryza sativa L.) root tip meristem cells. Mol Cells 9:436–439

    PubMed  CAS  Google Scholar 

  • Lee H, Lai K, Lorenc MT, Imelfort M, Duran C, Edwards D (2012) Bioinformatics tools and databases for analysis of next generation sequence data. Brief Funct Genomics (in press)

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    PubMed  Article  CAS  Google Scholar 

  • Li W, Zhang P, Fellers J, Friebe B, Gill B (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    PubMed  Article  CAS  Google Scholar 

  • Liu LZ, Wittkop B, Stein A, Sarvari P, Li JN, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    PubMed  Article  CAS  Google Scholar 

  • Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology (in press)

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    PubMed  Article  CAS  Google Scholar 

  • Marshall DJ, Hayward A, Eales D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Lai K, Duran C, Batley J, Edwards D (2010) Targeted identification of genomic regions using TAGdb. Plant Methods 6:19

    PubMed  Article  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Dolezel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    PubMed  Article  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the Barley Genome by Chromosomal and Comparative Genomics. Plant Cell 23:1249–1263

    Google Scholar 

  • McKay JK, Leach JE (2011) Linkage illuminates a complex genome. Nat Biotech 29:717–718

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury PJ, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    PubMed  Article  CAS  Google Scholar 

  • Metzker M (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    PubMed  Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Miller M, Dunham J, Amores A, Cresko W, Johnson E (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    PubMed  Article  CAS  Google Scholar 

  • Muers M (2011) Technology: getting Moore from DNA sequencing. Nat Rev Genet 12:586–587

    Google Scholar 

  • Nie X, Li B, Wang L, Liu P, Biradar SS, Li T, Dolezel J, Edwards D, Luo MC, Weining S (2012) Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot (in press)

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    PubMed  Article  CAS  Google Scholar 

  • Ozsolak F, Goren A, Gymrek MA, Guttman M, Regev A, Bernstein BE, Milos PM (2010) Digital transcriptome profiling from attomole-level RNA samples. Genome Res 20:519–525

    PubMed  Article  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    PubMed  Article  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    PubMed  Article  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh EA (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    PubMed  Article  CAS  Google Scholar 

  • Pichon J-PD, Riviere N, Duarte J, Dugas O, Wilmer JA, Gerhardt DJ, Richmond T, Albert TJ, Jeddeloh JA (2010) Rapeseed (B. napus) SNP discovery using a dedicated sequence capture protocol and 454 sequencing. Plant and Animal Genome Conference 2010, San Diego, USA

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O'Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    PubMed  Article  CAS  Google Scholar 

  • Raman H, Harsh R, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2012) Genetic and physical mapping of flowering time loci in oilseed rape (Brassica napus L.). Theor Appl Genet (in press)

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet. doi:10.1038/ng.1033

    PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Google Scholar 

  • Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genetics Genomics 274:119–130

    Article  CAS  Google Scholar 

  • Šafář J, Šimková H, Kubalákoá M, Číhalíková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    PubMed  Article  Google Scholar 

  • Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:R88

    PubMed  Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    PubMed  Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    PubMed  Article  CAS  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci USA 108:4069–4074

    PubMed  Article  CAS  Google Scholar 

  • Snowdon R, Iniguez Luy (2012) Breeding oilseed rape and canola in the genomics era. Plant Breed 131:351–360

    Article  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    PubMed  Article  Google Scholar 

  • Stokes D, Fraser F, Morgan C, O’Neill CM, Dreos R, Magusin A, Szalma S, Bancroft I (2010) An association transcriptomics approach to the prediction of hybrid performance. Mol Breed 26:91–96

    Article  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    PubMed  Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotech 7:257–264

    Article  CAS  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JRM, Lorenc MT, Manoli S, Stiller J, Raman R, Raman H, Edwards D, Batley J (2012) Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing. Plant Biotech J 10:709–715

    Article  CAS  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    PubMed  Article  CAS  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using solexa transcriptome sequencing. Plant Biotech J 7:334–346

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    PubMed  Article  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    PubMed  Article  CAS  Google Scholar 

  • Vlacilova K, Ohri D, Vrana J, Cihalikova J, Kubalakova M, Kahl G, Dolezel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosom Res 10:695–706

    Article  CAS  Google Scholar 

  • Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  Google Scholar 

  • Wang L, Li PH, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118–128

    PubMed  Article  CAS  Google Scholar 

  • Wang J, Lydiate IA, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011a) Integration of linkage maps for the amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    PubMed  Article  CAS  Google Scholar 

  • Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SL, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX et al (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040

    PubMed  Article  CAS  Google Scholar 

  • Wanjugi H, Coleman-Derr D, Huo NX, Kianian SF, Luo MC, Wu JJ, Anderson O, Gu YQ (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52:576–587

    PubMed  Article  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM, Barker GLA, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N, Bevan MW, Richmond T, Gerhardt DJ, Jeddeloh JA, Edwards KJ (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotech J 10:733–742

    Article  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • You FM, Huo N, Deal KR, Gu YQ, Luo M-C, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59

    PubMed  Article  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  Article  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

DE and JB acknowledge funding support from the Grains Research and Development Corporation (Project DAN00117) and the Australian Research Council (Projects LP0882095, LP0883462, LP110100200 and DP0985953), along with further support from the Australian Genome Research Facility (AGRF) and the Queensland Cyber Infrastructure Foundation (QCIF). RS was supported by a fellowship from the OECD Cooperative Research Programme “Biological Resource Management for Sustainable Agricultural Systems” and by DFG grants SN14/11-1 and SN14/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Batley.

Additional information

Communicated by R. Varshney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edwards, D., Batley, J. & Snowdon, R.J. Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126, 1–11 (2013). https://doi.org/10.1007/s00122-012-1964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1964-x

Keywords

  • Double Haploid
  • Oilseed Rape
  • Genomic Selection
  • General Combine Ability
  • Tauschii Accession