Skip to main content
Log in

Characterization, fine mapping and expression profiling of Ragged leaves1 in maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Ragged leaves1 (Rg1) maize mutant frequently develops lesions on leaves, leaf sheaths, and ear bracts. Lesion formation is independent of biotic stress. High-level accumulation of H2O2 revealed by staining Rg1 leaves, with 3′,3′-diaminobenzidine and trypan blue, suggested that lesion formation appeared to be due to cell death. Rg1 was initially mapped to an interval around 70.5 Mb in bin 3.04 on the short arm of chromosome 3. Utilizing 15 newly developed markers, Rg1 was delimitated to an interval around 17 kb using 16,356 individuals of a BC1 segregating population. There was only one gene, rp3, predicted in this region according to the B73 genome. Analysis of transcriptome data revealed that 441 genes significantly up-regulated in Rg1 leaves were functionally over-represented. Among those genes, several were involved in the production of reactive oxygen species (ROS). Our results suggested that lesions of Rg1 maize arose probably due to an aberrant rust resistance allele of Rp3, which elicited the accumulation of ROS independent of biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed  CAS  Google Scholar 

  • Bongard-Pierce DK, Evans M, Poethig RS (1996) Heteroblastic features of leaf anatomy in maize and their genetic regulation. Int J Plant Sci 157:331–340

    Article  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) Thecpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    PubMed  CAS  Google Scholar 

  • Brink RA, Senn PH (1931) Heritable characters in maize. XL. Ragged, a dominant character, linked with A1Ts4 and D1. J Hered 22:155–161

    Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Chintamanani S, Hulbert SH, Johal GS, Balint-Kurti PJ (2010) Identification of a maize locus that modulates the hypersensitive defense response, using mutant-assisted gene identification and characterization. Genetics 184:813–825

    Article  PubMed  CAS  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Farkhari M, Lu Y, Shah T, Zhang S, Naghavi MR, Rong T, Xu Y (2011) Recombination frequency variation in maize as revealed by genomewide single-nucleotide polymorphisms. Plant Breeding 130:533–539

    Article  CAS  Google Scholar 

  • Feng YJ, Wang JW, Luo SM (2007) Effects of exogenous jasmonic acid on concentrations of direct-defense chemicals and expression of related genes in bt (Bacillus thuringiensis) corn (Zea mays). Agric Sci in China 6:1456–1462

    Article  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticumaestivum L.) genome. Proc NatI Acad Sci USA 100:15253–15258

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. CurrOpin Plant Biol 9:436–442

    Article  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25–31

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    Article  PubMed  CAS  Google Scholar 

  • Heldt H-W (1997) Plant Biochemistry and Molecular Biology. Oxford University Press, New York

    Google Scholar 

  • Hoisington DA, Neuffer MG, Walbot V (1982) Disease lesion mimics in maize I. effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. DevBiol 93:381–388

    CAS  Google Scholar 

  • Hu G, Richter TE, Hulbert SH, Pryor T (1996) Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell 8:1367–1376

    PubMed  CAS  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1106

    PubMed  CAS  Google Scholar 

  • Johal GS, Hulbert SH, Briggs SP (1995) Disease lesion mimics of maize: a model for cell death in plants. BioEssays 17:685–692

    Article  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J MolSci 10:2860–2872

    Article  CAS  Google Scholar 

  • Kombrink E, Schröder M, Hahlbrock K (1988) Several “pathogenesis-related” proteins in potato are1, 3-β-glucanases and chitinases. Proc NatI Acad Sci USA 85:782–786

    Article  CAS  Google Scholar 

  • Lanubile A, Bernardi J, Marocco A, Logrieco A, Paciolla C (2011) Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusariumverticillioides. EnvironExp Bot 78:39–46

    Article  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Li T, Bai G (2009) Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theoret Appl Genet 119:13–21

    Article  CAS  Google Scholar 

  • Li Q, Wan JM (2005) SSRHunter: development of a local searching software for SSR sites. Hereditas 27:808–810

    PubMed  Google Scholar 

  • Li AL, Wang ML, Zhou RH, Kong XY, Huo NX, Wang WS, Jia JZ (2005) Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat powdery mildew interactions. Plant Pathol 54:308–316

    Article  CAS  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Mericle LW (1950) The developmental genetics of the Rg mutant in maize. Am J Bot 37:100–116

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Segura A, Garcia-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FebsLett 316:119–122

    Article  CAS  Google Scholar 

  • Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet JG, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S (2007) Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol 63:847–860

    Article  PubMed  CAS  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Molecular plant pathology 11:829–846

    PubMed  CAS  Google Scholar 

  • Qiao Y, Jiang W, Lee JH, Park BS, Choi MS, Piao R, Woo MO, Roh JH, Han L, Paek NC (2010) SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol 185:258–274

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins SE, Puerma E, Balañá-Alcaide D, Salguero D, Aguadé M (2008) Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana. Mol Ecol 17(5):1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Rohrmeier T, Lehle L (1993) WIP1, a wound-inducible gene from maize with homology to Bowman–Birk proteinase inhibitors. Plant Mol Biol 22:783–792

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 275:159–168

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. ProcNatIAcadSci 81:8014–8018

    CAS  Google Scholar 

  • Sandhu SS, Mazzafera P, Azini LE, Bastos CR, Colombo CA (2007) Lipoxygenase activity in Brazilian rice cultivars with variable resistance to leaf blast disease. Bragantia 66:27–30

    Article  CAS  Google Scholar 

  • Sanz-Alferez S, Richter TE, Hulbert SH, Bennetzen JL (1995) The Rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theoret Appl Genet 91:25–32

    Article  CAS  Google Scholar 

  • Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux JP (1997) Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol 114:79–88

    PubMed  CAS  Google Scholar 

  • Sebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Peè P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  PubMed  CAS  Google Scholar 

  • Seevers PM, Daly JM, Catedral FF (1971) The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiol 48:353–360

    Article  PubMed  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck B, Cammue B, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Shirano Y (2002) A gain-of-function mutation in an Arabidopsis toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  PubMed  CAS  Google Scholar 

  • Shrestha CL, Ona I, Muthukrishnan S, Mew TW (2008) Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctoniasolani. Eur J Plant Pathol 120:69–77

    Article  CAS  Google Scholar 

  • Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C (2011) Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J 66:996–1007

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5

    Article  PubMed  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Van Der Luit AH, Piatti T, DoornA Van, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1516

    Article  PubMed  Google Scholar 

  • Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, Pryor T, Hulbert SH (2002) Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics 162:381–394

    PubMed  CAS  Google Scholar 

  • Wilkinson DR, Hooker AL (1968) Genetics of reaction to Pucciniasorghi in ten corn inbred lines from Africa and Europe. Phytopathology 58:605–608

    Google Scholar 

  • Wolter M, Hollricher K, Salamini F, Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet 239:122–128

    PubMed  CAS  Google Scholar 

  • Wu C, Bordeos A, Madamba MRS, Baraoidan M, Ramos M, Wang G, Leach JE, Leung H (2008) Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 279:605–619

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Fan C, He Y (2007) Chitinases in Oryza sativa ssp.japonica and Arabidopsis thaliana. J Genet Genomics 34:138–150

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc NatI Acad Sci USA 99:7530–7535

    Article  CAS  Google Scholar 

  • Yao Q, Zhou R, Fu T, Wu W, Zhu Z, Li A, Jia J (2009) Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat. Theoret Appl Genet 119:1005–1012

    Article  CAS  Google Scholar 

  • Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13:869–876

    Article  PubMed  CAS  Google Scholar 

  • Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981

    Article  PubMed  CAS  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Basic Research Program of China (973 Program, 2009CB11840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Lai.

Additional information

Communicated by T. Luebberstedt.

Haiying Guan and Chaoxian Liu contributed equally to this work.

Electronic supplementary material

###Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, H., Liu, C., Zhao, Y. et al. Characterization, fine mapping and expression profiling of Ragged leaves1 in maize. Theor Appl Genet 125, 1125–1135 (2012). https://doi.org/10.1007/s00122-012-1899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1899-2

Keywords

Navigation