Skip to main content

Advertisement

Log in

Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause devastating yield losses in wheat. Over the past several decades, stem rust has been controlled worldwide through the use of genetic resistance. Stem rust race TTKSK (Ug99), first detected in Uganda in 1998, threatens global wheat production because of its unique virulence combination. As the majority of the currently grown cultivars and advanced breeding lines are susceptible to race TTKSK, sources of resistance need to be identified and characterized to facilitate their use in agriculture. South Dakota breeding line SD 1691 displayed resistance to race TTKSK in the international wheat stem rust nursery in Njoro, Kenya. Seedling screening of progeny derived from SD 1691 crossed to susceptible LMPG-6 indicated that a single resistance gene was present. Allelism and race-specificity tests indicated the stem rust resistance gene in SD 1691 was Sr28. The chromosome arm location of Sr28 was previously demonstrated to be 2BL. We identified molecular markers linked to Sr28 and validated this linkage in two additional populations. Common spring wheat cultivars in the central United States displayed allelic diversity for markers flanking Sr28. These markers could be used to select for Sr28 in breeding populations and for combining Sr28 with other stem rust resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Linkert GL, Busch RH, Wiersma JJ, Kolmer JA, Jin Y, Dill-Macky R, Wiersma JV, Hareland GA, McVey DV (2009) Registration of ‘RB07’ wheat. J Plant Regist 3:175–180

    Article  Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromos Res 16:1097–1105

    Article  CAS  Google Scholar 

  • Fetch T Jr (2007) Virulence of stem rust race TTKS on Canadian wheat cultivars. Can J Plant Pathol 29:441

    Google Scholar 

  • Hiebert CW, Fetch T Jr, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69

    Article  PubMed  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149

    Article  PubMed  Google Scholar 

  • Jin Y, Singh RP (2006) Resistance in U.S. wheat to recent Eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis 90:476–480

    Article  CAS  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T Jr, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse MN, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Knott DR (1990) Near-isogenic lines of wheat carrying genes for stem rust resistance. Crop Sci 30:901–905

    Article  Google Scholar 

  • Kolmer JA, Dyck PL, Roelfs AP (1991) An appraisal of stem and leaf rust resistance in North American hard red spring wheats and the probability of multiple mutations to virulence in populations of cereal rust fungi. Phytopathology 81:237–239

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microlinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yu L, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO (2011a) Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011b) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Brown-Geudira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA (1978) Cytogenetic studies in wheat X. Monosomic analysis and linkage studies involving genes for resistance to Puccinia graminis f. sp. tritici in cultivar Kota. Heredity 41:71–82

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Rasmussen JW, Friesen TL (2008) Registration of ‘Faller’ spring wheat. J Plant Regist 2:224–229

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Olson EL, Brown-Geudira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784

    Article  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  PubMed  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Roelfs AP (1978) Estimated losses caused by rust in small grain cereals in the United States—1918–76. USDA Miscellaneous Publication, USA, p 1363

    Google Scholar 

  • Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95:762–766

    Article  Google Scholar 

  • Rowell JB (1984) Controlled infection by Puccinia graminis f. sp. tritici under artificial conditions. In: Bushnell WR, Roelfs AP (eds) The cereal rusts, origins, specificity, structure, and physiology, vol 1. Academic Press, Florida, pp 292–332

    Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    PubMed  CAS  Google Scholar 

  • Sambasivam PK, Bansal UK, Hayden MJ, Dvorak J, Lagudah ES, Bariana HS (2008) Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat genetics symposium. Sydney University Press, Australia, pp 351–353

    Google Scholar 

  • Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658

    Article  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Hoessel SA, Ward R (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Stakman EC, Steward DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA Agric Res Serv E-617, Watson

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2007) Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci 47:2013–2020

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci 48:253–261

    Article  CAS  Google Scholar 

  • USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN). [Online Database] National Germplasm Resources Laboratory, Beltsville, Maryland. Available: http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1060539 (10 February 2012)

  • van Ooijen JW (2006) JoinMap 4.0: Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Wanyera R, Kinyua MG, Jin Y, Singh RP (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Dis 90:113

    Article  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci 49:1682–1686

    Article  Google Scholar 

  • Zhang W, Olson EL, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey MO, Dubcovsky J (2010) Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci 50:2464–2474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by USDA-ARS, USAID, and the Durable Rust Resistance in Wheat project (Bill and Melinda Gates Foundation). The research would not have been completed without assistance from Sarah Nelson, Sam Gale, Lucy Wanschura, Jennifer Flor, Mary Osenga, and several University of Minnesota undergraduate student technicians. We acknowledge the Computational Genetics Laboratory of the University of Minnesota Supercomputing Institute for computational support. Mention of trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the USDA, and does not imply its approval to the exclusion of other products and vendors that might also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Rouse.

Additional information

Communicated by F. Ordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouse, M.N., Nava, I.C., Chao, S. et al. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125, 877–885 (2012). https://doi.org/10.1007/s00122-012-1879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1879-6

Keywords