Skip to main content
Log in

QTL analysis of soybean seed weight across multi-genetic backgrounds and environments

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seed weight, measured as mass per seed, is an important yield component of soybean and is generally positively correlated with seed yield (Burton et al, Crop Sci 27:1093, 1987). In previous reports, quantitative trait loci (QTL) associated with seed weight, were identified in single genetic background. The objective of the present study was to identify QTL and epistatic QTL underlying soybean seed weight in three RIL populations (with one common male parent ‘Hefeng25’) and across three different environments. Overall, 18, 11, and 17 seed weight QTL were identified in HC (‘Hefeng25’ × ‘Conrad’), HM (‘Hefeng25’ × ‘Maple Arrow’), and HB (‘Hefeng25’ × ‘Bayfield’) populations, respectively. The amount of phenotypic variation explained by a single QTL underlying seed weight was usually less than 10 %. The environment and background-independent QTL often had higher additive (a) effects. In contrast, the environment or background-dependent QTL were probably due to weak expression of QTL. QTL by environment interaction effects were in the opposite direction of a effects and/or epistasis effects. Four QTL and one QTL could be identified (2.0 < LOD < 9.06) in the HC and HB populations, respectively, across three environments (swHCA2-1, swHCC2-1, swHCD1b-1, swHCA2-2 (linked to Satt233, Satt424, Satt460, Satt428, respectively) and swHBA1-1(Satt449). Seven QTL could be identified in all three RIL populations in at least one location. Two QTL could be identified in the three RIL populations across three environments. These two QTL may have greater potential for use in marker-assisted selection of seed weight in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basten CJ, Weir BS, Zeng ZB (1996) QTL cartographer. North Carolina State University, NC

    Google Scholar 

  • Brim CA, Cockerham CC (1961) Inheritance of quantitative characters in soybean. Crop Sci 1:187–190

    Article  Google Scholar 

  • Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37:370–378

    Article  Google Scholar 

  • Burton JW, Brim CA, Young MF (1987) Registration of young soybean. Crop Sci 27:1093

    Google Scholar 

  • Carlborg O, De Koning DJ, Manly KF, Chesler E, Williams RW, Haley CS (2005) Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21:2383–2393

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Randy CP, van Tassell C, Specht EJ, Cregan PB (2007) A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  PubMed  CAS  Google Scholar 

  • Cooper RL (1990) Modified early generation testing procedure for yield selection in soybean. Crop Sci 30:417–419

    Article  Google Scholar 

  • Davierwala AP, Reddy AP, Lagu MD, Rangjekar PK, Gupta VS (2001) Marker assisted selection of bacterial blight resistance gene in rice. Biochem Genet 39:261–268

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched l and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Fehr WR (1987) Backcross method. In: Fehr WR (ed) Principles of cultivar development, vol I. Mc Graw Hill, New York, pp 360–376

    Google Scholar 

  • Gutierrez-Gonzalez JJ, Wu X, Gillman JD, Lee JD, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen HT, Sleper DA (2010) Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biol 10:105

    Article  PubMed  Google Scholar 

  • Hartwig E (1973) Varietal development. In: Caldwell BE (ed) Soybean: improvement, production, and uses. American Society of Agronomy, USA, pp 187–210

    Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality in a prominent soybean population. Theor Appl Genet 109:552–556

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Choi IK, Song QJ, Specht JE, Carter TEJ, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Ken I, Takayuki K, Naoki H, Yuka M (2005) Identification and physiological analyses of a locus for rice yield potential across the genetic background. Exper Bot 56(420):2745–2753

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li ZK, Pinson SRM, Stansel JM, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426

    Article  CAS  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL by environment interactions in rice I. heading date and plant height. Theor Appl Genet 108:141–153

    Article  PubMed  CAS  Google Scholar 

  • Li DM, Sun MM, Han YP, Teng WL, Li WB (2009) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172(1):49–57

    Article  Google Scholar 

  • Li XP, Han YP, Teng WL, Zhang SZ, Yu KF, Poysa V, Anderson T, Ding JJ, Li WB (2010a) Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theor Appl Genet 121(4):651–658

    Article  PubMed  Google Scholar 

  • Li HY, Liu HC, Han YP, Wu XX, Teng WL, Sun GL, Li WB (2010b) Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet 120:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Liao CY, Wu P, Hu B, Yi KK (2001) Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet 103:104–111

    Article  CAS  Google Scholar 

  • Lightfoot DA (2008) Soybean genomics: Developments through the use of cultivar Forrest. Int J of Plant Genom 2008:1–22. doi:10.1155/2008/793158

    Article  Google Scholar 

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • McKendry AL, Tague DN, Finney PL, Miskin KE (1996) Effect of 1BL.1RS on milling and baking quality of soft red winter wheat. Crop Sci 36:848–851

    Article  Google Scholar 

  • Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, Carter TE, Parrott JWA, Ashley DA, Hussey RS, Boerma HR (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016

    Article  CAS  Google Scholar 

  • Millan T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Res 84:373–384

    Article  Google Scholar 

  • Ohno Y, Tanase H, Nabika T, Otsuda K, Sasaki T, Suzawa T, Korii T, Yamori Y, Saruta T (2000) Selective genotyping with epistasis can be utilized for a major quantitative trait locus mapping in hypertension in rats. Genetics 155:785–792

    PubMed  CAS  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Prabhu RR, Njiti V, Johnson JE, Schmidt ME, Klein JH III, Lightfoot DA (1999) Selecting soybean cultivars for dual resistance to cyst nematode sudden death syndrome with two DNA markers. Crop Sci 39:982–987

    Article  CAS  Google Scholar 

  • Price AH, Towhend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTL associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Bio 48:683–695

    Article  CAS  Google Scholar 

  • Primomo VS, Poysa V, Ablett GR, Jackson CJ, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 45:2454–2464

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Severin A, Woody J, Bolon Y-T, Joseph B, Diers B, Farmer A, Muehlbauer G, Nelson R, Grant D, Specht J, Graham M, Cannon S, May G, Vance C, Shoemaker R (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160–176

    Article  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential—a genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • Stefaniak TR, Hyten DL, Pantalone VR (2005) Soybean cultivars resulted from more recombination events than unselected lines in the same population. Crop Sci 46:43–51

    Article  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato-A re-examinations. Theor Appl Genet 75:811–823

    Article  CAS  Google Scholar 

  • Teng WL, Han YP, Du YP, Sun DS, Zhang ZC, Qiu LJ, Sun GL, Li WB (2008) QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity 102:372–380

    Article  PubMed  Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Yong G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L, Schmid-Hempel P (2008) The genetic architecture of susceptibility to parasites. BMC Evol Biol 8:187

    Article  PubMed  Google Scholar 

  • Yan W (2001) GGE biplot-a windows application for graphical analysis of multi-environment trial data and other types of two way data. Agron J 93:1111–1117

    Article  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Bricenrio G, Dovel R, Hayes PM, Liu BH, Liu CT, Ullrich SE (1999) Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl Genet 98:772–779

    Article  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted in the Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research & Development Center, CARS and the key Laboratory of Northeastern Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, financially supported by National High Technology Project (Contract No. 2006AA10Z1F1), National Core Soybean Genetic Engineering Project (Contract No. 2008ZX08004-002, 2009ZX08004-002B, 2009ZX08009-089B), Chinese National Natural Science Foundation (60932008, 30971810), National 973 Project (2009CB118400), China/Heilongjiang province post doctor fund, and Provincial/National education Ministry for the team of soybean molecular design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li.

Additional information

Communicated by H. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Li, D., Zhu, D. et al. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125, 671–683 (2012). https://doi.org/10.1007/s00122-012-1859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1859-x

Keywords

Navigation